Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
vc=-edges[0];
}
else
if (order[0]==2 && order[2]==1)
{
vv=v3;
vb=-edges[2];
vc=-edges[1];
}
//optimal increment for the short and long edge, respectively
float db=(vb.x*xRes > vb.y*yRes)? vb.x*xRes : vb.y*yRes;
db=(vb.z*zRes > db)? vb.z*zRes : db;
db=1.f/db;
float dc=(vc.x*xRes > vc.y*yRes)? vc.x*xRes : vc.y*yRes;
dc=(vc.z*zRes > dc)? vc.z*zRes : dc;
dc=1.f/dc;
std::cout << "\nID #" << i << ": v1=(" << v1.x << "," << v1.y << "," << v1.z << ")\n";
std::cout << "ID #" << i << ": v2=(" << v2.x << "," << v2.y << "," << v2.z << ")\n";
std::cout << "ID #" << i << ": v3=(" << v3.x << "," << v3.y << "," << v3.z << ")\n";
//sweeping (and rendering) the triangle
for (float c=0.f; c <= 1.0f; c += dc)
for (float b=0.f; b <= (1.0f-c); b += db)
{
Vector3F v=vv;
v+=b*vb;
v+=c*vc;
std::cout << "ID #" << i << ": v=(" << v.x << "," << v.y << "," << v.z << ")\n";
//nearest neighbor pixel coordinate
const int x=(int)roundf( (v.x-xOff) *xRes);
const int y=(int)roundf( (v.y-yOff) *yRes);
const int z=(int)roundf( (v.z-zOff) *zRes);
if (mask.Include(x,y,z)) mask.SetVoxel(x,y,z,short(i));
}
}
}
void ActiveMesh::RenderOneTimeTexture(const i3d::Image3d<i3d::GRAY16>& mask,
i3d::Image3d<i3d::GRAY16>& texture)
{
i3d::Image3d<float> dt;
i3d::GrayToFloat(mask,dt);
#ifdef SAVE_INTERMEDIATE_IMAGES
i3d::Image3d<float> perlinInner,perlinOutside;
perlinInner.CopyMetaData(mask);
DoPerlin3D(perlinInner,5.0,0.8*1.5,0.7*1.5,6);
#ifdef SAVE_INTERMEDIATE_IMAGES
//perlinInner.SaveImage("2_PerlinAlone_Inner.ics");
#ifdef SAVE_INTERMEDIATE_IMAGES
//perlinOutside.SaveImage("2_PerlinAlone_Outside.ics");
i3d::Image3d<i3d::GRAY16> erroded;
i3d::ErosionO(mask,erroded,1);
//initial object intensity levels
float* p=dt.GetFirstVoxelAddr();
float* const pL=p+dt.GetImageSize();
const float* pI=perlinInner.GetFirstVoxelAddr();
const float* pO=perlinOutside.GetFirstVoxelAddr();
const i3d::GRAY16* er=erroded.GetFirstVoxelAddr();
//are we within the mask?
if (*p > 0.f)
if (*p < 0.3f || *er == 0) *p=2000.f + 5000.f*(*pO); //corona
if (*er == 0) *p=2000.f; //std::max(*p,2000.f); //corona
if (*p < 0.f) *p=0.f;
#ifdef SAVE_INTERMEDIATE_IMAGES
perlinInner.DisposeData();
perlinOutside.DisposeData();
erroded.DisposeData();
#ifdef SAVE_INTERMEDIATE_IMAGES
dt.SaveImage("4_texture_filtered.ics");
//downsample now:
float factor[3]={1.f,1.f,0.125f};
i3d::Image3d<float>* tmp=NULL;
i3d::lanczos_resample(&dt,tmp,factor,2);
#ifdef SAVE_INTERMEDIATE_IMAGES
tmp->SaveImage("5_texture_filtered_resampled.ics");
#endif
for (int z=0; z < (signed)dt.GetSizeZ(); ++z)
for (int y=0; y < (signed)dt.GetSizeY(); ++y)
for (int x=0; x < (signed)dt.GetSizeX(); ++x, ++p)
//background signal:
float distSq=((float)x-110.f)*((float)x-110.f) + ((float)y-110.f)*((float)y-110.f);
//uncertainty in the number of incoming photons
const float noiseMean = sqrtf(*p), // from statistics: shot noise = sqrt(signal)
noiseVar = noiseMean; // for Poisson distribution E(X) = D(X)
*p+=40.f*((float)GetRandomPoisson(noiseMean) - noiseVar);
//constants are parameters of Andor iXon camera provided from vendor:
//photon shot noise: dark current
*p+=(float)GetRandomPoisson(0.06f);
//read-out noise:
// variance up to 25.f (old camera on ILBIT)
// variance about 1.f (for the new camera on ILBIT)
*p+=GetRandomGauss(480.f,20.f);
//*p+=530.f;
#ifdef SAVE_INTERMEDIATE_IMAGES
dt.SaveImage("6_texture_filtered_resampled_finalized.ics");
#endif
i3d::FloatToGrayNoWeight(dt,texture);
}
void ActiveMesh::CenterMesh(const Vector3F& newCentre)
{
//calc geom. centre
double x=0.,y=0.,z=0.;
for (unsigned int i=0; i < Pos.size(); ++i)
{
x+=Pos[i].x;
y+=Pos[i].y;
z+=Pos[i].z;
}
x/=double(Pos.size());
y/=double(Pos.size());
z/=double(Pos.size());
//std::cout << "mesh centre is: " << x << "," << y << "," << z << "\n";
x-=newCentre.x;
y-=newCentre.y;
z-=newCentre.z;
//shift the centre to point (0,0,0)
for (unsigned int i=0; i < Pos.size(); ++i)
{
Pos[i].x-=float(x);
Pos[i].y-=float(y);
Pos[i].z-=float(z);
}
for (unsigned int i=0; i < fPoints.size(); ++i)
{
fPoints[i].x-=float(x);
fPoints[i].y-=float(y);
fPoints[i].z-=float(z);
}
}
void ActiveMesh::ScaleMesh(const Vector3F& scale)
{
Vladimír Ulman
committed
//cell body
for (unsigned int i=0; i < Pos.size(); ++i)
{
Pos[i].x*=scale.x;
Pos[i].y*=scale.y;
Pos[i].z*=scale.z;
}
Vladimír Ulman
committed
//filopodia
for (size_t f=0; f < Ftree.size(); ++f)
{
mesh_t& filoMesh=Ftree[f];
for (unsigned int i=0; i < filoMesh.Pos.size(); ++i)
{
filoMesh.Pos[i].x*=scale.x;
filoMesh.Pos[i].y*=scale.y;
filoMesh.Pos[i].z*=scale.z;
}
}
void ActiveMesh::TranslateMesh(const Vector3F& shift)
{
Vladimír Ulman
committed
//cell body
for (unsigned int i=0; i < Pos.size(); ++i)
{
Pos[i].x+=shift.x;
Pos[i].y+=shift.y;
Pos[i].z+=shift.z;
}
Vladimír Ulman
committed
//filopodia
for (size_t f=0; f < Ftree.size(); ++f)
{
mesh_t& filoMesh=Ftree[f];
for (unsigned int i=0; i < filoMesh.Pos.size(); ++i)
{
filoMesh.Pos[i].x+=shift.x;
filoMesh.Pos[i].y+=shift.y;
filoMesh.Pos[i].z+=shift.z;
}
}
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
// ============== surface fitting ==============
int ActiveMesh::CalcQuadricSurface_Taubin(const int vertexID,
float (&coeffs)[10])
{
//determine some reasonable number of nearest neighbors
std::vector< std::vector<size_t> > neigsLeveled;
ulm::getVertexNeighbours(*this,vertexID,2,neigsLeveled);
//make it flat...
std::vector<size_t> neigs;
for (unsigned int l=0; l < neigsLeveled.size(); ++l)
for (unsigned int i=0; i < neigsLeveled[l].size(); ++i)
neigs.push_back(neigsLeveled[l][i]);
neigsLeveled.clear();
//V be the vector of [x,y,z] combinations, a counterpart to coeffs
float V[10],V1[10],V2[10],V3[10];
//M be the matrix holding initially sum of (square matrices) V*V'
//N is similar, just a sum of three different Vs is used
float M[100],N[100];
for (int i=0; i < 100; ++i) M[i]=N[i]=0.f;
//over all neighbors (including the centre vertex itself),
//
//this order garuantees that array V will be relevant for input
//vertexID after the cycles are over -- will become handy later
for (signed int n=(int)neigs.size()-1; n >= 0; --n)
{
//shortcut to the current point
const Vector3FC& v=Pos[neigs[n]];
//get Vs for the given point 'v'
V[0]=1.f; V1[0]=0.f; V2[0]=0.f; V3[0]=0.f;
V[1]=v.x; V1[1]=1.f; V2[1]=0.f; V3[1]=0.f;
V[2]=v.y; V1[2]=0.f; V2[2]=1.f; V3[2]=0.f;
V[3]=v.z; V1[3]=0.f; V2[3]=0.f; V3[3]=1.f;
V[4]=v.x*v.y; V1[4]=v.y; V2[4]=v.x; V3[4]=0.f;
V[5]=v.x*v.z; V1[5]=v.z; V2[5]=0.f; V3[5]=v.x;
V[6]=v.y*v.z; V1[6]=0.f; V2[6]=v.z; V3[6]=v.y;
V[7]=v.x*v.x; V1[7]=2.f*v.x; V2[7]=0.f; V3[7]=0.f;
V[8]=v.y*v.y; V1[8]=0.f; V2[8]=2.f*v.y; V3[8]=0.f;
V[9]=v.z*v.z; V1[9]=0.f; V2[9]=0.f; V3[9]=2.f*v.z;
//construct V*V' and add it to M and N
for (int j=0; j < 9; ++j) //for column
for (int i=0; i < 9; ++i) //for row; note the order optimal for Fortran
{
//C order (row-major): M_i,j -> M[i][j] -> &M +i*STRIDE +j
//Lapack/Fortran order (column-major): M_i,j -> M[i][j] -> &M +j*STRIDE +i
//const int off=i*10 +j; //C
const int off=j*9 +i; //Fortran
M[off]+= V[j+1]* V[i+1];
N[off]+=V1[j+1]*V1[i+1];
N[off]+=V2[j+1]*V2[i+1];
N[off]+=V3[j+1]*V3[i+1];
}
}
//now, solve the generalized eigenvector of the matrix pair (M,N):
//MC = nNC
//
//M,N are (reduced) 9x9 matrices constructed above,
//C is vector (infact, the coeff), n is scalar Lagrange multiplier
//
//if M,N were (full-size) 10x10 matrices, the N would be singular
//as the 1st row would contain only zeros,
//it is therefore reduced to 9x9 sacrifing the first row
//
//according to netlib (Lapack) docs, http://www.netlib.org/lapack/lug/node34.html
//type 1, Az=lBz -- A=M, B=N, z=C
//function: SSYGV
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
lapack_int itype=1;
char jobz='V';
char uplo='U';
lapack_int n=9;
float w[10];
float work[512];
lapack_int lwork=512;
lapack_int info;
LAPACK_ssygv(&itype,&jobz,&uplo,&n,M,&n,N,&n,w,work,&lwork,&info);
std::cout << "vertices considered: " << neigs.size() << "\n";
std::cout << "info=" << info << " (0 is OK)\n";
std::cout << "work(1)=" << work[0] << " (should be below 512)\n";
//if some error, report it to the caller
if (info != 0) return info;
//M is now matrix of eigenvectors
//it should hold (according to Lapack docs):
//Z^T N Z = I where Z is one eigenvector, I is identity matrix
//
//w holds eigenvalues in ascending order
//our result c[1]...c[9] is the eigenvector
Vladimír Ulman
committed
//corresponding to the smallest non-negative eigenvalue, so the j-th eigenvector
int j=0;
while (j < 9 && w[j] < 0.f) ++j;
//have we found some non-negative eigenvalue?
if (j == 9) return(-9999);
//also:
//the last missing coefficient c[0] we will determine by submitting
//the given input vertex to the algebraic expresion of the surface
//(given with coeffs) and equating it to zero:
coeffs[0]=0.f;
for (int i=0; i < 9; ++i)
{
Vladimír Ulman
committed
coeffs[i+1]=M[j*9 +i]; //copy eigenvector
coeffs[0]-=coeffs[i+1]*V[i+1]; //determine c[0]
Vladimír Ulman
committed
std::cout << "w(j)=" << w[j] << ", j=" << j << "\n";
bool ActiveMesh::GetPointOnQuadricSurface(const float x,const float y,
float &z1, float &z2,
const float (&coeffs)[10])
{
const float a=coeffs[9];
const float b=coeffs[3] +coeffs[5]*x +coeffs[6]*y;
const float c=coeffs[0] +coeffs[1]*x +coeffs[2]*y
+coeffs[4]*x*y +coeffs[7]*x*x +coeffs[8]*y*y;
const float sqArg=b*b - 4*a*c;
if (sqArg < 0.f) return false;
if (a == 0.f) return false;
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
z1=(-b + sqrtf(sqArg)) / (2.f*a);
z2=(-b - sqrtf(sqArg)) / (2.f*a);
return true;
}
float ActiveMesh::GetClosestPointOnQuadricSurface(Vector3F& point,
const float (&coeffs)[10])
{
//backup original input coordinate
const float x=point.x;
const float y=point.y;
const float z=point.z;
float tmp1,tmp2;
//list of possible coordinates
std::vector<Vector3F> pointAdepts;
//took a pair of coordinates, calculate the third one
//and make it an adept...
if (GetPointOnQuadricSurface(x,y,tmp1,tmp2,coeffs))
{
pointAdepts.push_back(Vector3F(x,y,tmp1));
pointAdepts.push_back(Vector3F(x,y,tmp2));
}
if (GetPointOnQuadricSurface(x,z,tmp1,tmp2,coeffs))
{
pointAdepts.push_back(Vector3F(x,tmp1,z));
pointAdepts.push_back(Vector3F(x,tmp2,z));
}
if (GetPointOnQuadricSurface(y,z,tmp1,tmp2,coeffs))
{
pointAdepts.push_back(Vector3F(tmp1,y,z));
pointAdepts.push_back(Vector3F(tmp2,y,z));
}
//are we doomed?
if (pointAdepts.size() == 0)
return (-999999.f);
//find the closest
int closestIndex=ChooseClosestPoint(pointAdepts,point);
//calc distance to it
point-=pointAdepts[closestIndex];
tmp1=point.Len();
//adjust the input/output point
point=pointAdepts[closestIndex];
return (tmp1);
}
int ActiveMesh::ChooseClosestPoint(const std::vector<Vector3F>& points,
const Vector3F& point)
{
int minIndex=-1;
float minSqDist=9999999999999.f;
Vector3F p;
for (unsigned int i=0; i < points.size(); ++i)
{
p=point;
p-=points[i];
if (p.LenQ() < minSqDist)
{
minIndex=i;
minSqDist=p.LenQ();
}
}
return minIndex;
}
Vladimír Ulman
committed
Vladimír Ulman
committed
void ActiveMesh::InitDots_body(const i3d::Image3d<i3d::GRAY16>& mask)
Vladimír Ulman
committed
{
i3d::Image3d<float> dt;
i3d::GrayToFloat(mask,dt);
i3d::EDM(dt,0,100.f,false);
#ifdef SAVE_INTERMEDIATE_IMAGES
dt.SaveImage("1_DTAlone.ics");
#endif
i3d::Image3d<float> perlinInner,perlinOutside;
perlinInner.CopyMetaData(mask);
DoPerlin3D(perlinInner,5.0,0.8*1.5,0.7*1.5,6);
#ifdef SAVE_INTERMEDIATE_IMAGES
//perlinInner.SaveImage("2_PerlinAlone_Inner.ics");
Vladimír Ulman
committed
#endif
perlinOutside.CopyMetaData(mask);
DoPerlin3D(perlinOutside,1.8,0.8*1.5,0.7*1.5,6);
Vladimír Ulman
committed
#ifdef SAVE_INTERMEDIATE_IMAGES
//perlinOutside.SaveImage("2_PerlinAlone_Outside.ics");
Vladimír Ulman
committed
#endif
i3d::Image3d<i3d::GRAY16> erroded;
i3d::ErosionO(mask,erroded,1);
//initial object intensity levels
float* p=dt.GetFirstVoxelAddr();
float* const pL=p+dt.GetImageSize();
const float* pI=perlinInner.GetFirstVoxelAddr();
const float* pO=perlinOutside.GetFirstVoxelAddr();
const i3d::GRAY16* er=erroded.GetFirstVoxelAddr();
while (p != pL)
{
//are we within the mask?
if (*p > 0.f)
{
//close to the surface?
if (*p < 0.3f || *er == 0) *p=2000.f + 5000.f*(*pO); //corona
else *p=600.f + 600.f*(*pI); //inside
Vladimír Ulman
committed
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
if (*er == 0) *p=2000.f; //std::max(*p,2000.f); //corona
if (*p < 0.f) *p=0.f;
}
++p; ++pI; ++pO; ++er;
}
#ifdef SAVE_INTERMEDIATE_IMAGES
dt.SaveImage("3_texture.ics");
#endif
perlinInner.DisposeData();
perlinOutside.DisposeData();
erroded.DisposeData();
//now, read the "molecules"
dots.clear();
dots.reserve(1<<23);
//time savers...
const float xRes=mask.GetResolution().GetX();
const float yRes=mask.GetResolution().GetY();
const float zRes=mask.GetResolution().GetZ();
const float xOff=mask.GetOffset().x;
const float yOff=mask.GetOffset().y;
const float zOff=mask.GetOffset().z;
p=dt.GetFirstVoxelAddr();
for (int z=0; z < (signed)dt.GetSizeZ(); ++z)
for (int y=0; y < (signed)dt.GetSizeY(); ++y)
for (int x=0; x < (signed)dt.GetSizeX(); ++x, ++p)
for (int v=0; v < *p; v+=50)
{
//convert px coords into um
const float X=(float)x/xRes + xOff;
const float Y=(float)y/yRes + yOff;
const float Z=(float)z/zRes + zOff;
dots.push_back(Vector3F(X,Y,Z));
if (dots.size() == dots.capacity())
{
std::cout << "reserving more at position: " << x << "," << y << "," << z << "\n";
dots.reserve(dots.size()+(1<<20));
}
}
//#ifdef SAVE_INTERMEDIATE_IMAGES
Vladimír Ulman
committed
std::cout << "intiated " << dots.size() << " fl. molecules (capacity is for "
<< dots.capacity() << ")\n";
Vladimír Ulman
committed
}
Vladimír Ulman
committed
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
void ActiveMesh::InitDots_filo(const i3d::Image3d<i3d::GRAY16>& mask)
{
//time savers...
const float xRes=mask.GetResolution().GetX();
const float yRes=mask.GetResolution().GetY();
const float zRes=mask.GetResolution().GetZ();
const float xOff=mask.GetOffset().x;
const float yOff=mask.GetOffset().y;
const float zOff=mask.GetOffset().z;
const i3d::GRAY16* p=mask.GetFirstVoxelAddr();
for (int z=0; z < (signed)mask.GetSizeZ(); ++z)
for (int y=0; y < (signed)mask.GetSizeY(); ++y)
for (int x=0; x < (signed)mask.GetSizeX(); ++x, ++p)
if (*p > 100)
{
//convert px coords into um
const float X=(float)x/xRes + xOff;
const float Y=(float)y/yRes + yOff;
const float Z=(float)z/zRes + zOff;
for (int q=0; q < 80; ++q) dots.push_back(Vector3F(X,Y,Z));
}
}
Vladimír Ulman
committed
void ActiveMesh::BrownDots(const i3d::Image3d<i3d::GRAY16>& mask)
{
//TODO REMOVE ME
for (size_t i=0; i < dots.size(); ++i)
dots[i].x+=1.0f;
}
template <class VT>
VT GetPixel(i3d::Image3d<VT> const &img,const float x,const float y,const float z)
Vladimír Ulman
committed
{
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
/*
//nearest neighbor:
int X=static_cast<int>(roundf(x));
int Y=static_cast<int>(roundf(y));
int Z=static_cast<int>(roundf(z));
if (img.Include(X,Y,Z)) return(img.GetVoxel(X,Y,Z));
else return(0);
*/
//nearest not-greater integer coordinate, "o" in the picture in docs
//X,Y,Z will be coordinate of the voxel no. 2
const int X=static_cast<int>(floorf(x));
const int Y=static_cast<int>(floorf(y));
const int Z=static_cast<int>(floorf(z));
//now we can write only to pixels at [X or X+1,Y or Y+1,Z or Z+1]
//quit if too far from the "left" borders of the image
//as we wouldn't be able to draw into the image anyway
if ((X < -1) || (Y < -1) || (Z < -1)) return (0);
//residual fraction of the input coordinate
const float Xfrac=x - static_cast<float>(X);
const float Yfrac=y - static_cast<float>(Y);
const float Zfrac=z - static_cast<float>(Z);
//the weights
float A=0.0f,B=0.0f,C=0.0f,D=0.0f; //for 2D
//x axis:
A=D=Xfrac;
B=C=1.0f - Xfrac;
//y axis:
A*=1.0f - Yfrac;
B*=1.0f - Yfrac;
C*=Yfrac;
D*=Yfrac;
//z axis:
float A_=A,B_=B,C_=C,D_=D;
A*=1.0f - Zfrac;
B*=1.0f - Zfrac;
C*=1.0f - Zfrac;
D*=1.0f - Zfrac;
A_*=Zfrac;
B_*=Zfrac;
C_*=Zfrac;
D_*=Zfrac;
//portions of the value in a bit more organized form, w[z][y][x]
const float w[2][2][2]={{{B ,A },{C ,D }},
{{B_,A_},{C_,D_}}};
//the return value
float v=0;
//reading from the input image,
//for (int zi=0; zi < 2; ++zi) if (Z+zi < (signed)img.GetSizeZ()) { //shortcut for 2D cases to avoid some computations...
for (int zi=0; zi < 2; ++zi)
for (int yi=0; yi < 2; ++yi)
for (int xi=0; xi < 2; ++xi)
if (img.Include(X+xi,Y+yi,Z+zi)) {
//if we got here then we can safely change coordinate types
v+=(float)img.GetVoxel((size_t)X+xi,(size_t)Y+yi,(size_t)Z+zi) * w[zi][yi][xi];
}
//}
return ( static_cast<VT>(v) );
}
void ActiveMesh::FFDots(const i3d::Image3d<i3d::GRAY16>& mask,
const FlowField<float> &FF)
{
//TODO: tests: FF consistency, same size as mask?
//time savers...
const float xRes=mask.GetResolution().GetX();
const float yRes=mask.GetResolution().GetY();
const float zRes=mask.GetResolution().GetZ();
const float xOff=mask.GetOffset().x;
const float yOff=mask.GetOffset().y;
const float zOff=mask.GetOffset().z;
//apply FF on the this->dots (no boundary checking)
Vladimír Ulman
committed
for (size_t i=0; i < dots.size(); ++i)
{
//turn micron position into pixel one
const float X=(dots[i].x -xOff) *xRes;
const float Y=(dots[i].y -yOff) *yRes;
const float Z=(dots[i].z -zOff) *zRes;
//note: GetPixel() returns 0 in case we ask for value outside the image
//TODO: check against mask
dots[i].x += GetPixel(*FF.x, X,Y,Z);
dots[i].y += GetPixel(*FF.y, X,Y,Z);
dots[i].z += GetPixel(*FF.z, X,Y,Z);
}
Vladimír Ulman
committed
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
}
void ActiveMesh::RenderDots(const i3d::Image3d<i3d::GRAY16>& mask,
i3d::Image3d<i3d::GRAY16>& texture)
{
texture.CopyMetaData(mask);
texture.GetVoxelData()=0;
//time savers...
const float xRes=texture.GetResolution().GetX();
const float yRes=texture.GetResolution().GetY();
const float zRes=texture.GetResolution().GetZ();
const float xOff=texture.GetOffset().x;
const float yOff=texture.GetOffset().y;
const float zOff=texture.GetOffset().z;
//time-savers for boundary checking...
const int maxX=(int)texture.GetSizeX()-1;
const int maxY=(int)texture.GetSizeY()-1;
const int maxZ=(int)texture.GetSizeZ()-1;
//time-savers for accessing neigbors...
const size_t xLine=texture.GetSizeX();
const size_t Slice=texture.GetSizeY() *xLine;
i3d::GRAY16* const T=texture.GetFirstVoxelAddr();
//render the points into the texture image
for (size_t i=0; i < dots.size(); ++i)
{
const int x=(int)roundf( (dots[i].x-xOff) *xRes);
const int y=(int)roundf( (dots[i].y-yOff) *yRes);
const int z=(int)roundf( (dots[i].z-zOff) *zRes);
if ((x > 0) && (y > 0) && (z > 0)
Vladimír Ulman
committed
&& (x < maxX) && (y < maxY) && (z < maxZ)) T[z*Slice +y*xLine +x]+=i3d::GRAY16(50);
}
for (size_t i=0; i < dots_filo.size(); ++i)
{
const int x=(int)roundf( (dots_filo[i].x-xOff) *xRes);
const int y=(int)roundf( (dots_filo[i].y-yOff) *yRes);
const int z=(int)roundf( (dots_filo[i].z-zOff) *zRes);
if ((x > 0) && (y > 0) && (z > 0)
&& (x < maxX) && (y < maxY) && (z < maxZ)) T[z*Slice +y*xLine +x]+=i3d::GRAY16(50);
Vladimír Ulman
committed
}
Vladimír Ulman
committed
}
Vladimír Ulman
committed
Vladimír Ulman
committed
void ActiveMesh::PhaseII(const i3d::Image3d<i3d::GRAY16>& texture,
i3d::Image3d<float>& intermediate)
{
i3d::GrayToFloat(texture,intermediate);
Vladimír Ulman
committed
i3d::GaussIIR(intermediate,3.f,3.f,2.5f);
Vladimír Ulman
committed
#ifdef SAVE_INTERMEDIATE_IMAGES
Vladimír Ulman
committed
intermediate.SaveImage("4_texture_filtered.ics");
Vladimír Ulman
committed
#endif
Vladimír Ulman
committed
}
Vladimír Ulman
committed
Vladimír Ulman
committed
void ActiveMesh::PhaseIII(i3d::Image3d<float>& intermediate,
i3d::Image3d<i3d::GRAY16>& texture)
{
Vladimír Ulman
committed
#ifdef SAVE_INTERMEDIATE_IMAGES
intermediate.SaveImage("5_texture_filtered_resampled.ics");
Vladimír Ulman
committed
#endif
Vladimír Ulman
committed
float* p=intermediate.GetFirstVoxelAddr();
for (int z=0; z < (signed)intermediate.GetSizeZ(); ++z)
for (int y=0; y < (signed)intermediate.GetSizeY(); ++y)
for (int x=0; x < (signed)intermediate.GetSizeX(); ++x, ++p)
Vladimír Ulman
committed
{
//background signal:
float distSq=((float)x-110.f)*((float)x-110.f) + ((float)y-110.f)*((float)y-110.f);
*p+=150.f*expf(-0.5f * distSq / 2500.f);
Vladimír Ulman
committed
//uncertainty in the number of incoming photons
const float noiseMean = sqrtf(*p), // from statistics: shot noise = sqrt(signal)
noiseVar = noiseMean; // for Poisson distribution E(X) = D(X)
*p+=40.f*((float)GetRandomPoisson(noiseMean) - noiseVar);
Vladimír Ulman
committed
//constants are parameters of Andor iXon camera provided from vendor:
//photon shot noise: dark current
*p+=(float)GetRandomPoisson(0.06f);
//read-out noise:
// variance up to 25.f (old camera on ILBIT)
// variance about 1.f (for the new camera on ILBIT)
*p+=GetRandomGauss(480.f,20.f);
//*p+=530.f;
}
#ifdef SAVE_INTERMEDIATE_IMAGES
Vladimír Ulman
committed
intermediate.SaveImage("6_texture_filtered_resampled_finalized.ics");
Vladimír Ulman
committed
#endif
//obtain final GRAY16 image
Vladimír Ulman
committed
i3d::FloatToGrayNoWeight(intermediate,texture);
Vladimír Ulman
committed
}
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
void ActiveMesh::ConstructFF(FlowField<float> &FF)
{
//erase the flow field
//iterate:
// put displacement vectors
// smooth
//tests: TODO
//FF must be consistent
//oldVolPos and newVolPos must be of the same length
//erase
FF.x->GetVoxelData()=0;
FF.y->GetVoxelData()=0;
FF.z->GetVoxelData()=0;
//time savers...
const float xRes=FF.x->GetResolution().GetX();
const float yRes=FF.x->GetResolution().GetY();
const float zRes=FF.x->GetResolution().GetZ();
const float xOff=FF.x->GetOffset().x;
const float yOff=FF.x->GetOffset().y;
const float zOff=FF.x->GetOffset().z;
//time-savers for boundary checking...
const int maxX=(int)FF.x->GetSizeX()-1;
const int maxY=(int)FF.x->GetSizeY()-1;
const int maxZ=(int)FF.x->GetSizeZ()-1;
//time-savers for accessing neigbors...
const size_t xLine=FF.x->GetSizeX();
const size_t Slice=FF.x->GetSizeY() *xLine;
float* const ffx=FF.x->GetFirstVoxelAddr();
float* const ffy=FF.y->GetFirstVoxelAddr();
float* const ffz=FF.z->GetFirstVoxelAddr();
//inject displacements
for (size_t i=0; i < oldVolPos.size(); ++i)
const int x=(int)roundf( (oldVolPos[i].x-xOff) *xRes);
const int y=(int)roundf( (oldVolPos[i].y-yOff) *yRes);
const int z=(int)roundf( (oldVolPos[i].z-zOff) *zRes);
const float dx=newVolPos[i].x - oldVolPos[i].x;
const float dy=newVolPos[i].y - oldVolPos[i].y;
const float dz=newVolPos[i].z - oldVolPos[i].z;
if ((x > 0) && (y > 0) && (z > 0)
&& (x < maxX) && (y < maxY) && (z < maxZ))
{
ffx[z*Slice +y*xLine +x]=dx;
ffy[z*Slice +y*xLine +x]=dy;
ffz[z*Slice +y*xLine +x]=dz;
//smooth
i3d::GaussIIR(*FF.x,15.0f);
i3d::GaussIIR(*FF.y,15.0f);
i3d::GaussIIR(*FF.z,15.0f);
//multiply (to "correct" after normalized smoothing)
FF.x->GetVoxelData()*=1240.f;
FF.y->GetVoxelData()*=1240.f;
FF.z->GetVoxelData()*=1240.f;
Vladimír Ulman
committed
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
void ActiveMesh::ConstructFF_T(FlowField<float> &FF)
{
//erase the flow field
//add displacement vectors by "rendering" displacement tetrahedra
//smooth
//tests: TODO
//FF must be consistent
//oldVolPos and newVolPos must be of the same length
//length of oldVolPos*4 and length of VolID must be the same
//erase
FF.x->GetVoxelData()=0;
FF.y->GetVoxelData()=0;
FF.z->GetVoxelData()=0;
i3d::Image3d<i3d::GRAY16> imgCounts;
imgCounts.CopyMetaData(*FF.x);
imgCounts.GetVoxelData()=0;
//time savers...
const float xRes=FF.x->GetResolution().GetX();
const float yRes=FF.x->GetResolution().GetY();
const float zRes=FF.x->GetResolution().GetZ();
const float xOff=FF.x->GetOffset().x;
const float yOff=FF.x->GetOffset().y;
const float zOff=FF.x->GetOffset().z;
//time-savers for boundary checking...
const int maxX=(int)FF.x->GetSizeX()-1;
const int maxY=(int)FF.x->GetSizeY()-1;
const int maxZ=(int)FF.x->GetSizeZ()-1;
//time-savers for accessing neigbors...
const size_t xLine=FF.x->GetSizeX();
const size_t Slice=FF.x->GetSizeY() *xLine;
float* const ffx=FF.x->GetFirstVoxelAddr();
float* const ffy=FF.y->GetFirstVoxelAddr();
float* const ffz=FF.z->GetFirstVoxelAddr();
i3d::GRAY16* const ffC=imgCounts.GetFirstVoxelAddr();
//over all tetrahedra
for (size_t i=0; i < VolID.size(); i+=4)
{
//tetrahedron to drive positions in the FF
//(positions tetrahedron)
const Vector3F& v1=oldVolPos[VolID[i+0]];
const Vector3F& v2=oldVolPos[VolID[i+1]];
const Vector3F& v3=oldVolPos[VolID[i+2]];
const Vector3F& v4=oldVolPos[VolID[i+3]];
//now iterate over the tetrahedra:
for (float d=0.f; d <= 1.0f; d += 0.04f)
for (float c=0.f; c <= (1.0f-d); c += 0.04f)
for (float b=0.f; b <= (1.0f-d-c); b += 0.04f)
{
float a=1.0f -b -c -d;
//float-point coordinate:
Vector3F tmp;
tmp =a*v1;
tmp+=b*v2;
tmp+=c*v3;
tmp+=d*v4;
//pixel (integer) coordinate:
const int x=(int)roundf( (tmp.x-xOff) *xRes);
const int y=(int)roundf( (tmp.y-yOff) *yRes);
const int z=(int)roundf( (tmp.z-zOff) *zRes);
if ((x > 0) && (y > 0) && (z > 0)
&& (x < maxX) && (y < maxY) && (z < maxZ))
{
//tetrahedron to drive values to place at these positions
//(values tetrahedron)
const Vector3F dv1=newVolPos[VolID[i+0]] - v1;
const Vector3F dv2=newVolPos[VolID[i+1]] - v2;
const Vector3F dv3=newVolPos[VolID[i+2]] - v3;
const Vector3F dv4=newVolPos[VolID[i+3]] - v4;
//value
tmp =a*dv1;
tmp+=b*dv2;
tmp+=c*dv3;
tmp+=d*dv4;
ffx[z*Slice +y*xLine +x]+=tmp.x;
ffy[z*Slice +y*xLine +x]+=tmp.y;
ffz[z*Slice +y*xLine +x]+=tmp.z;
ffC[z*Slice +y*xLine +x]+=1;
}
}
}
//finish the averaging of FF
for (size_t i=0; i < imgCounts.GetImageSize(); ++i)
if (*(ffC+i))
{
*(ffx+i)/=float(*(ffC+i));
*(ffy+i)/=float(*(ffC+i));
*(ffz+i)/=float(*(ffC+i));
}
//imgCounts.SaveImage("counts.ics"); //TODO REMOVE
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
//a bit more of fine-tunning:
// make 2 rounds of 1px dilations into a copy image
// extract the added 2px wide shell
// widen the shell into another image with 2 rounds of 1px dilations
// smooth sigma=1px this wider shell
// mask/narrow the smoothed shell according to the previous shell
// and combine with the original FF
i3d::Image3d<i3d::GRAY16> tmp,shell,shellSmooth;
i3d::Image3d<float> tmpF;
tmpF=*FF.x;
tmpF.GetVoxelData()*=1000.f;
//tmpF.GetVoxelData()+=32768.f;
tmpF.GetVoxelData()+=30000.f;
i3d::FloatToGrayNoWeight(tmpF,shell);
tmpF.SaveImage("shell0_F.ics");
shell.SaveImage("shell0.ics");
// make 2 rounds of 1px dilations into a copy image
i3d::Dilation(shell,tmp,i3d::nb3D_o18);
i3d::Dilation(tmp,shell,i3d::nb3D_o18);
shell.SaveImage("shell1.ics");
// extract the added 2px wide shell
i3d::Dilation(shell,tmp,i3d::nb3D_o18);
i3d::Dilation(tmp,shell,i3d::nb3D_o18);
shell.SaveImage("shell2.ics");
GrayToFloat(shell,tmpF);
tmpF.SaveImage("shell2_F.ics");
tmpF.GetVoxelData()-=30000.f;
tmpF.GetVoxelData()/=1000.f;
tmpF.SaveImage("shell2_normalValues_F.ics");
// widen the shell into another image with 2 rounds of 1px dilations
// smooth sigma=1px this wider shell
// mask/narrow the smoothed shell according to the previous shell
// and combine with the original FF