Newer
Older
}
void ActiveMesh::ScaleMesh(const Vector3F& scale)
{
for (unsigned int i=0; i < Pos.size(); ++i)
{
Pos[i].x*=scale.x;
Pos[i].y*=scale.y;
Pos[i].z*=scale.z;
}
}
void ActiveMesh::TranslateMesh(const Vector3F& shift)
{
for (unsigned int i=0; i < Pos.size(); ++i)
{
Pos[i].x+=shift.x;
Pos[i].y+=shift.y;
Pos[i].z+=shift.z;
}
}
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
// ============== surface fitting ==============
int ActiveMesh::CalcQuadricSurface_Taubin(const int vertexID,
float (&coeffs)[10])
{
//determine some reasonable number of nearest neighbors
std::vector< std::vector<size_t> > neigsLeveled;
ulm::getVertexNeighbours(*this,vertexID,2,neigsLeveled);
//make it flat...
std::vector<size_t> neigs;
for (unsigned int l=0; l < neigsLeveled.size(); ++l)
for (unsigned int i=0; i < neigsLeveled[l].size(); ++i)
neigs.push_back(neigsLeveled[l][i]);
neigsLeveled.clear();
//V be the vector of [x,y,z] combinations, a counterpart to coeffs
float V[10],V1[10],V2[10],V3[10];
//M be the matrix holding initially sum of (square matrices) V*V'
//N is similar, just a sum of three different Vs is used
float M[100],N[100];
for (int i=0; i < 100; ++i) M[i]=N[i]=0.f;
//over all neighbors (including the centre vertex itself),
//
//this order garuantees that array V will be relevant for input
//vertexID after the cycles are over -- will become handy later
for (signed int n=(int)neigs.size()-1; n >= 0; --n)
{
//shortcut to the current point
const Vector3FC& v=Pos[neigs[n]];
//get Vs for the given point 'v'
V[0]=1.f; V1[0]=0.f; V2[0]=0.f; V3[0]=0.f;
V[1]=v.x; V1[1]=1.f; V2[1]=0.f; V3[1]=0.f;
V[2]=v.y; V1[2]=0.f; V2[2]=1.f; V3[2]=0.f;
V[3]=v.z; V1[3]=0.f; V2[3]=0.f; V3[3]=1.f;
V[4]=v.x*v.y; V1[4]=v.y; V2[4]=v.x; V3[4]=0.f;
V[5]=v.x*v.z; V1[5]=v.z; V2[5]=0.f; V3[5]=v.x;
V[6]=v.y*v.z; V1[6]=0.f; V2[6]=v.z; V3[6]=v.y;
V[7]=v.x*v.x; V1[7]=2.f*v.x; V2[7]=0.f; V3[7]=0.f;
V[8]=v.y*v.y; V1[8]=0.f; V2[8]=2.f*v.y; V3[8]=0.f;
V[9]=v.z*v.z; V1[9]=0.f; V2[9]=0.f; V3[9]=2.f*v.z;
//construct V*V' and add it to M and N
for (int j=0; j < 9; ++j) //for column
for (int i=0; i < 9; ++i) //for row; note the order optimal for Fortran
{
//C order (row-major): M_i,j -> M[i][j] -> &M +i*STRIDE +j
//Lapack/Fortran order (column-major): M_i,j -> M[i][j] -> &M +j*STRIDE +i
//const int off=i*10 +j; //C
const int off=j*9 +i; //Fortran
M[off]+= V[j+1]* V[i+1];
N[off]+=V1[j+1]*V1[i+1];
N[off]+=V2[j+1]*V2[i+1];
N[off]+=V3[j+1]*V3[i+1];
}
}
//now, solve the generalized eigenvector of the matrix pair (M,N):
//MC = nNC
//
//M,N are (reduced) 9x9 matrices constructed above,
//C is vector (infact, the coeff), n is scalar Lagrange multiplier
//
//if M,N were (full-size) 10x10 matrices, the N would be singular
//as the 1st row would contain only zeros,
//it is therefore reduced to 9x9 sacrifing the first row
//
//according to netlib (Lapack) docs, http://www.netlib.org/lapack/lug/node34.html
//type 1, Az=lBz -- A=M, B=N, z=C
//function: SSYGV
lapack_int itype=1;
char jobz='V';
char uplo='U';
lapack_int n=9;
float w[10];
float work[512];
lapack_int lwork=512;
lapack_int info;
LAPACK_ssygv(&itype,&jobz,&uplo,&n,M,&n,N,&n,w,work,&lwork,&info);
std::cout << "vertices considered: " << neigs.size() << "\n";
std::cout << "info=" << info << " (0 is OK)\n";
std::cout << "work(1)=" << work[0] << " (should be below 512)\n";
//if some error, report it to the caller
if (info != 0) return info;
//M is now matrix of eigenvectors
//it should hold (according to Lapack docs):
//Z^T N Z = I where Z is one eigenvector, I is identity matrix
//
//w holds eigenvalues in ascending order
//our result c[1]...c[9] is the eigenvector
Vladimír Ulman
committed
//corresponding to the smallest non-negative eigenvalue, so the j-th eigenvector
int j=0;
while (j < 9 && w[j] < 0.f) ++j;
//have we found some non-negative eigenvalue?
if (j == 9) return(-9999);
//also:
//the last missing coefficient c[0] we will determine by submitting
//the given input vertex to the algebraic expresion of the surface
//(given with coeffs) and equating it to zero:
coeffs[0]=0.f;
for (int i=0; i < 9; ++i)
{
Vladimír Ulman
committed
coeffs[i+1]=M[j*9 +i]; //copy eigenvector
coeffs[0]-=coeffs[i+1]*V[i+1]; //determine c[0]
Vladimír Ulman
committed
std::cout << "w(j)=" << w[j] << ", j=" << j << "\n";
bool ActiveMesh::GetPointOnQuadricSurface(const float x,const float y,
float &z1, float &z2,
const float (&coeffs)[10])
{
const float a=coeffs[9];
const float b=coeffs[3] +coeffs[5]*x +coeffs[6]*y;
const float c=coeffs[0] +coeffs[1]*x +coeffs[2]*y
+coeffs[4]*x*y +coeffs[7]*x*x +coeffs[8]*y*y;
const float sqArg=b*b - 4*a*c;
if (sqArg < 0.f) return false;
if (a == 0.f) return false;
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
z1=(-b + sqrtf(sqArg)) / (2.f*a);
z2=(-b - sqrtf(sqArg)) / (2.f*a);
return true;
}
float ActiveMesh::GetClosestPointOnQuadricSurface(Vector3F& point,
const float (&coeffs)[10])
{
//backup original input coordinate
const float x=point.x;
const float y=point.y;
const float z=point.z;
float tmp1,tmp2;
//list of possible coordinates
std::vector<Vector3F> pointAdepts;
//took a pair of coordinates, calculate the third one
//and make it an adept...
if (GetPointOnQuadricSurface(x,y,tmp1,tmp2,coeffs))
{
pointAdepts.push_back(Vector3F(x,y,tmp1));
pointAdepts.push_back(Vector3F(x,y,tmp2));
}
if (GetPointOnQuadricSurface(x,z,tmp1,tmp2,coeffs))
{
pointAdepts.push_back(Vector3F(x,tmp1,z));
pointAdepts.push_back(Vector3F(x,tmp2,z));
}
if (GetPointOnQuadricSurface(y,z,tmp1,tmp2,coeffs))
{
pointAdepts.push_back(Vector3F(tmp1,y,z));
pointAdepts.push_back(Vector3F(tmp2,y,z));
}
//are we doomed?
if (pointAdepts.size() == 0)
return (-999999.f);
//find the closest
int closestIndex=ChooseClosestPoint(pointAdepts,point);
//calc distance to it
point-=pointAdepts[closestIndex];
tmp1=point.Len();
//adjust the input/output point
point=pointAdepts[closestIndex];
return (tmp1);
}
int ActiveMesh::ChooseClosestPoint(const std::vector<Vector3F>& points,
const Vector3F& point)
{
int minIndex=-1;
float minSqDist=9999999999999.f;
Vector3F p;
for (unsigned int i=0; i < points.size(); ++i)
{
p=point;
p-=points[i];
if (p.LenQ() < minSqDist)
{
minIndex=i;
minSqDist=p.LenQ();
}
}
return minIndex;
}