Newer
Older
//constants are parameters of Andor iXon camera provided from vendor:
//photon shot noise: dark current
*p+=(float)GetRandomPoisson(0.06f);
//read-out noise:
// variance up to 25.f (old camera on ILBIT)
// variance about 1.f (for the new camera on ILBIT)
*p+=GetRandomGauss(480.f,20.f);
//*p+=530.f;
#ifdef SAVE_INTERMEDIATE_IMAGES
dt.SaveImage("6_texture_filtered_resampled_finalized.ics");
#endif
i3d::FloatToGrayNoWeight(dt,texture);
}
void ActiveMesh::CenterMesh(const Vector3F& newCentre)
{
//calc geom. centre
double x=0.,y=0.,z=0.;
for (unsigned int i=0; i < Pos.size(); ++i)
{
x+=Pos[i].x;
y+=Pos[i].y;
z+=Pos[i].z;
}
x/=double(Pos.size());
y/=double(Pos.size());
z/=double(Pos.size());
//std::cout << "mesh centre is: " << x << "," << y << "," << z << "\n";
x-=newCentre.x;
y-=newCentre.y;
z-=newCentre.z;
//shift the centre to point (0,0,0)
for (unsigned int i=0; i < Pos.size(); ++i)
{
Pos[i].x-=float(x);
Pos[i].y-=float(y);
Pos[i].z-=float(z);
}
for (unsigned int i=0; i < fPoints.size(); ++i)
{
fPoints[i].x-=float(x);
fPoints[i].y-=float(y);
fPoints[i].z-=float(z);
}
}
void ActiveMesh::ScaleMesh(const Vector3F& scale)
{
for (unsigned int i=0; i < Pos.size(); ++i)
{
Pos[i].x*=scale.x;
Pos[i].y*=scale.y;
Pos[i].z*=scale.z;
}
}
void ActiveMesh::TranslateMesh(const Vector3F& shift)
{
for (unsigned int i=0; i < Pos.size(); ++i)
{
Pos[i].x+=shift.x;
Pos[i].y+=shift.y;
Pos[i].z+=shift.z;
}
}
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
// ============== surface fitting ==============
int ActiveMesh::CalcQuadricSurface_Taubin(const int vertexID,
float (&coeffs)[10])
{
//determine some reasonable number of nearest neighbors
std::vector< std::vector<size_t> > neigsLeveled;
ulm::getVertexNeighbours(*this,vertexID,2,neigsLeveled);
//make it flat...
std::vector<size_t> neigs;
for (unsigned int l=0; l < neigsLeveled.size(); ++l)
for (unsigned int i=0; i < neigsLeveled[l].size(); ++i)
neigs.push_back(neigsLeveled[l][i]);
neigsLeveled.clear();
//V be the vector of [x,y,z] combinations, a counterpart to coeffs
float V[10],V1[10],V2[10],V3[10];
//M be the matrix holding initially sum of (square matrices) V*V'
//N is similar, just a sum of three different Vs is used
float M[100],N[100];
for (int i=0; i < 100; ++i) M[i]=N[i]=0.f;
//over all neighbors (including the centre vertex itself),
//
//this order garuantees that array V will be relevant for input
//vertexID after the cycles are over -- will become handy later
for (signed int n=(int)neigs.size()-1; n >= 0; --n)
{
//shortcut to the current point
const Vector3FC& v=Pos[neigs[n]];
//get Vs for the given point 'v'
V[0]=1.f; V1[0]=0.f; V2[0]=0.f; V3[0]=0.f;
V[1]=v.x; V1[1]=1.f; V2[1]=0.f; V3[1]=0.f;
V[2]=v.y; V1[2]=0.f; V2[2]=1.f; V3[2]=0.f;
V[3]=v.z; V1[3]=0.f; V2[3]=0.f; V3[3]=1.f;
V[4]=v.x*v.y; V1[4]=v.y; V2[4]=v.x; V3[4]=0.f;
V[5]=v.x*v.z; V1[5]=v.z; V2[5]=0.f; V3[5]=v.x;
V[6]=v.y*v.z; V1[6]=0.f; V2[6]=v.z; V3[6]=v.y;
V[7]=v.x*v.x; V1[7]=2.f*v.x; V2[7]=0.f; V3[7]=0.f;
V[8]=v.y*v.y; V1[8]=0.f; V2[8]=2.f*v.y; V3[8]=0.f;
V[9]=v.z*v.z; V1[9]=0.f; V2[9]=0.f; V3[9]=2.f*v.z;
//construct V*V' and add it to M and N
for (int j=0; j < 9; ++j) //for column
for (int i=0; i < 9; ++i) //for row; note the order optimal for Fortran
{
//C order (row-major): M_i,j -> M[i][j] -> &M +i*STRIDE +j
//Lapack/Fortran order (column-major): M_i,j -> M[i][j] -> &M +j*STRIDE +i
//const int off=i*10 +j; //C
const int off=j*9 +i; //Fortran
M[off]+= V[j+1]* V[i+1];
N[off]+=V1[j+1]*V1[i+1];
N[off]+=V2[j+1]*V2[i+1];
N[off]+=V3[j+1]*V3[i+1];
}
}
//now, solve the generalized eigenvector of the matrix pair (M,N):
//MC = nNC
//
//M,N are (reduced) 9x9 matrices constructed above,
//C is vector (infact, the coeff), n is scalar Lagrange multiplier
//
//if M,N were (full-size) 10x10 matrices, the N would be singular
//as the 1st row would contain only zeros,
//it is therefore reduced to 9x9 sacrifing the first row
//
//according to netlib (Lapack) docs, http://www.netlib.org/lapack/lug/node34.html
//type 1, Az=lBz -- A=M, B=N, z=C
//function: SSYGV
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
lapack_int itype=1;
char jobz='V';
char uplo='U';
lapack_int n=9;
float w[10];
float work[512];
lapack_int lwork=512;
lapack_int info;
LAPACK_ssygv(&itype,&jobz,&uplo,&n,M,&n,N,&n,w,work,&lwork,&info);
std::cout << "vertices considered: " << neigs.size() << "\n";
std::cout << "info=" << info << " (0 is OK)\n";
std::cout << "work(1)=" << work[0] << " (should be below 512)\n";
//if some error, report it to the caller
if (info != 0) return info;
//M is now matrix of eigenvectors
//it should hold (according to Lapack docs):
//Z^T N Z = I where Z is one eigenvector, I is identity matrix
//
//w holds eigenvalues in ascending order
//our result c[1]...c[9] is the eigenvector
Vladimír Ulman
committed
//corresponding to the smallest non-negative eigenvalue, so the j-th eigenvector
int j=0;
while (j < 9 && w[j] < 0.f) ++j;
//have we found some non-negative eigenvalue?
if (j == 9) return(-9999);
//also:
//the last missing coefficient c[0] we will determine by submitting
//the given input vertex to the algebraic expresion of the surface
//(given with coeffs) and equating it to zero:
coeffs[0]=0.f;
for (int i=0; i < 9; ++i)
{
Vladimír Ulman
committed
coeffs[i+1]=M[j*9 +i]; //copy eigenvector
coeffs[0]-=coeffs[i+1]*V[i+1]; //determine c[0]
Vladimír Ulman
committed
std::cout << "w(j)=" << w[j] << ", j=" << j << "\n";
bool ActiveMesh::GetPointOnQuadricSurface(const float x,const float y,
float &z1, float &z2,
const float (&coeffs)[10])
{
const float a=coeffs[9];
const float b=coeffs[3] +coeffs[5]*x +coeffs[6]*y;
const float c=coeffs[0] +coeffs[1]*x +coeffs[2]*y
+coeffs[4]*x*y +coeffs[7]*x*x +coeffs[8]*y*y;
const float sqArg=b*b - 4*a*c;
if (sqArg < 0.f) return false;
if (a == 0.f) return false;
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
z1=(-b + sqrtf(sqArg)) / (2.f*a);
z2=(-b - sqrtf(sqArg)) / (2.f*a);
return true;
}
float ActiveMesh::GetClosestPointOnQuadricSurface(Vector3F& point,
const float (&coeffs)[10])
{
//backup original input coordinate
const float x=point.x;
const float y=point.y;
const float z=point.z;
float tmp1,tmp2;
//list of possible coordinates
std::vector<Vector3F> pointAdepts;
//took a pair of coordinates, calculate the third one
//and make it an adept...
if (GetPointOnQuadricSurface(x,y,tmp1,tmp2,coeffs))
{
pointAdepts.push_back(Vector3F(x,y,tmp1));
pointAdepts.push_back(Vector3F(x,y,tmp2));
}
if (GetPointOnQuadricSurface(x,z,tmp1,tmp2,coeffs))
{
pointAdepts.push_back(Vector3F(x,tmp1,z));
pointAdepts.push_back(Vector3F(x,tmp2,z));
}
if (GetPointOnQuadricSurface(y,z,tmp1,tmp2,coeffs))
{
pointAdepts.push_back(Vector3F(tmp1,y,z));
pointAdepts.push_back(Vector3F(tmp2,y,z));
}
//are we doomed?
if (pointAdepts.size() == 0)
return (-999999.f);
//find the closest
int closestIndex=ChooseClosestPoint(pointAdepts,point);
//calc distance to it
point-=pointAdepts[closestIndex];
tmp1=point.Len();
//adjust the input/output point
point=pointAdepts[closestIndex];
return (tmp1);
}
int ActiveMesh::ChooseClosestPoint(const std::vector<Vector3F>& points,
const Vector3F& point)
{
int minIndex=-1;
float minSqDist=9999999999999.f;
Vector3F p;
for (unsigned int i=0; i < points.size(); ++i)
{
p=point;
p-=points[i];
if (p.LenQ() < minSqDist)
{
minIndex=i;
minSqDist=p.LenQ();
}
}
return minIndex;
}
Vladimír Ulman
committed
void ActiveMesh::InitDots(const i3d::Image3d<i3d::GRAY16>& mask)
{
i3d::Image3d<float> dt;
i3d::GrayToFloat(mask,dt);
i3d::EDM(dt,0,100.f,false);
#ifdef SAVE_INTERMEDIATE_IMAGES
dt.SaveImage("1_DTAlone.ics");
#endif
i3d::Image3d<float> perlinInner,perlinOutside;
perlinInner.CopyMetaData(mask);
DoPerlin3D(perlinInner,5.0,0.8*1.5,0.7*1.5,6);
#ifdef SAVE_INTERMEDIATE_IMAGES
//perlinInner.SaveImage("2_PerlinAlone_Inner.ics");
Vladimír Ulman
committed
#endif
perlinOutside.CopyMetaData(mask);
DoPerlin3D(perlinOutside,1.8,0.8*1.5,0.7*1.5,6);
Vladimír Ulman
committed
#ifdef SAVE_INTERMEDIATE_IMAGES
//perlinOutside.SaveImage("2_PerlinAlone_Outside.ics");
Vladimír Ulman
committed
#endif
i3d::Image3d<i3d::GRAY16> erroded;
i3d::ErosionO(mask,erroded,1);
//initial object intensity levels
float* p=dt.GetFirstVoxelAddr();
float* const pL=p+dt.GetImageSize();
const float* pI=perlinInner.GetFirstVoxelAddr();
const float* pO=perlinOutside.GetFirstVoxelAddr();
const i3d::GRAY16* er=erroded.GetFirstVoxelAddr();
while (p != pL)
{
//are we within the mask?
if (*p > 0.f)
{
//close to the surface?
if (*p < 0.3f || *er == 0) *p=2000.f + 5000.f*(*pO); //corona
else *p=600.f + 600.f*(*pI); //inside
Vladimír Ulman
committed
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
if (*er == 0) *p=2000.f; //std::max(*p,2000.f); //corona
if (*p < 0.f) *p=0.f;
}
++p; ++pI; ++pO; ++er;
}
#ifdef SAVE_INTERMEDIATE_IMAGES
dt.SaveImage("3_texture.ics");
#endif
perlinInner.DisposeData();
perlinOutside.DisposeData();
erroded.DisposeData();
//now, read the "molecules"
dots.clear();
dots.reserve(1<<23);
//time savers...
const float xRes=mask.GetResolution().GetX();
const float yRes=mask.GetResolution().GetY();
const float zRes=mask.GetResolution().GetZ();
const float xOff=mask.GetOffset().x;
const float yOff=mask.GetOffset().y;
const float zOff=mask.GetOffset().z;
p=dt.GetFirstVoxelAddr();
for (int z=0; z < (signed)dt.GetSizeZ(); ++z)
for (int y=0; y < (signed)dt.GetSizeY(); ++y)
for (int x=0; x < (signed)dt.GetSizeX(); ++x, ++p)
for (int v=0; v < *p; v+=50)
{
//convert px coords into um
const float X=(float)x/xRes + xOff;
const float Y=(float)y/yRes + yOff;
const float Z=(float)z/zRes + zOff;
dots.push_back(Vector3F(X,Y,Z));
/*
if (dots.size() == dots.capacity())
{
std::cout << "reserving more at position: " << x << "," << y << "," << z << "\n";
dots.reserve(dots.size()+(1<<20));
}
*/
}
//#ifdef SAVE_INTERMEDIATE_IMAGES
Vladimír Ulman
committed
std::cout << "intiated " << dots.size() << " fl. molecules (capacity is for "
<< dots.capacity() << ")\n";
Vladimír Ulman
committed
}
void ActiveMesh::BrownDots(const i3d::Image3d<i3d::GRAY16>& mask)
{
//TODO REMOVE ME
for (size_t i=0; i < dots.size(); ++i)
dots[i].x+=1.0f;
}
template <class VT>
VT GetPixel(i3d::Image3d<VT> const &img,const float x,const float y,const float z)
Vladimír Ulman
committed
{
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
/*
//nearest neighbor:
int X=static_cast<int>(roundf(x));
int Y=static_cast<int>(roundf(y));
int Z=static_cast<int>(roundf(z));
if (img.Include(X,Y,Z)) return(img.GetVoxel(X,Y,Z));
else return(0);
*/
//nearest not-greater integer coordinate, "o" in the picture in docs
//X,Y,Z will be coordinate of the voxel no. 2
const int X=static_cast<int>(floorf(x));
const int Y=static_cast<int>(floorf(y));
const int Z=static_cast<int>(floorf(z));
//now we can write only to pixels at [X or X+1,Y or Y+1,Z or Z+1]
//quit if too far from the "left" borders of the image
//as we wouldn't be able to draw into the image anyway
if ((X < -1) || (Y < -1) || (Z < -1)) return (0);
//residual fraction of the input coordinate
const float Xfrac=x - static_cast<float>(X);
const float Yfrac=y - static_cast<float>(Y);
const float Zfrac=z - static_cast<float>(Z);
//the weights
float A=0.0f,B=0.0f,C=0.0f,D=0.0f; //for 2D
//x axis:
A=D=Xfrac;
B=C=1.0f - Xfrac;
//y axis:
A*=1.0f - Yfrac;
B*=1.0f - Yfrac;
C*=Yfrac;
D*=Yfrac;
//z axis:
float A_=A,B_=B,C_=C,D_=D;
A*=1.0f - Zfrac;
B*=1.0f - Zfrac;
C*=1.0f - Zfrac;
D*=1.0f - Zfrac;
A_*=Zfrac;
B_*=Zfrac;
C_*=Zfrac;
D_*=Zfrac;
//portions of the value in a bit more organized form, w[z][y][x]
const float w[2][2][2]={{{B ,A },{C ,D }},
{{B_,A_},{C_,D_}}};
//the return value
float v=0;
//reading from the input image,
//for (int zi=0; zi < 2; ++zi) if (Z+zi < (signed)img.GetSizeZ()) { //shortcut for 2D cases to avoid some computations...
for (int zi=0; zi < 2; ++zi)
for (int yi=0; yi < 2; ++yi)
for (int xi=0; xi < 2; ++xi)
if (img.Include(X+xi,Y+yi,Z+zi)) {
//if we got here then we can safely change coordinate types
v+=(float)img.GetVoxel((size_t)X+xi,(size_t)Y+yi,(size_t)Z+zi) * w[zi][yi][xi];
}
//}
return ( static_cast<VT>(v) );
}
void ActiveMesh::FFDots(const i3d::Image3d<i3d::GRAY16>& mask,
const FlowField<float> &FF)
{
//TODO: tests: FF consistency, same size as mask?
//time savers...
const float xRes=mask.GetResolution().GetX();
const float yRes=mask.GetResolution().GetY();
const float zRes=mask.GetResolution().GetZ();
const float xOff=mask.GetOffset().x;
const float yOff=mask.GetOffset().y;
const float zOff=mask.GetOffset().z;
//apply FF on the this->dots (no boundary checking)
Vladimír Ulman
committed
for (size_t i=0; i < dots.size(); ++i)
{
//turn micron position into pixel one
const float X=(dots[i].x -xOff) *xRes;
const float Y=(dots[i].y -yOff) *yRes;
const float Z=(dots[i].z -zOff) *zRes;
//note: GetPixel() returns 0 in case we ask for value outside the image
//TODO: check against mask
dots[i].x += GetPixel(*FF.x, X,Y,Z);
dots[i].y += GetPixel(*FF.y, X,Y,Z);
dots[i].z += GetPixel(*FF.z, X,Y,Z);
}
Vladimír Ulman
committed
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
}
void ActiveMesh::RenderDots(const i3d::Image3d<i3d::GRAY16>& mask,
i3d::Image3d<i3d::GRAY16>& texture)
{
texture.CopyMetaData(mask);
texture.GetVoxelData()=0;
//time savers...
const float xRes=texture.GetResolution().GetX();
const float yRes=texture.GetResolution().GetY();
const float zRes=texture.GetResolution().GetZ();
const float xOff=texture.GetOffset().x;
const float yOff=texture.GetOffset().y;
const float zOff=texture.GetOffset().z;
//time-savers for boundary checking...
const int maxX=(int)texture.GetSizeX()-1;
const int maxY=(int)texture.GetSizeY()-1;
const int maxZ=(int)texture.GetSizeZ()-1;
//time-savers for accessing neigbors...
const size_t xLine=texture.GetSizeX();
const size_t Slice=texture.GetSizeY() *xLine;
i3d::GRAY16* const T=texture.GetFirstVoxelAddr();
//render the points into the texture image
for (size_t i=0; i < dots.size(); ++i)
{
const int x=(int)roundf( (dots[i].x-xOff) *xRes);
const int y=(int)roundf( (dots[i].y-yOff) *yRes);
const int z=(int)roundf( (dots[i].z-zOff) *zRes);
if ((x > 0) && (y > 0) && (z > 0)
&& (x < maxX) && (y < maxY) && (z < maxZ)) T[z*Slice +y*xLine +x]+=i3d::GRAY16(50);
Vladimír Ulman
committed
}
Vladimír Ulman
committed
}
Vladimír Ulman
committed
Vladimír Ulman
committed
void ActiveMesh::PhaseII(const i3d::Image3d<i3d::GRAY16>& texture,
i3d::Image3d<float>& intermediate)
{
i3d::GrayToFloat(texture,intermediate);
Vladimír Ulman
committed
i3d::GaussIIR(intermediate,3.f,3.f,2.5f);
Vladimír Ulman
committed
#ifdef SAVE_INTERMEDIATE_IMAGES
Vladimír Ulman
committed
intermediate.SaveImage("4_texture_filtered.ics");
Vladimír Ulman
committed
#endif
Vladimír Ulman
committed
}
Vladimír Ulman
committed
Vladimír Ulman
committed
void ActiveMesh::PhaseIII(i3d::Image3d<float>& intermediate,
i3d::Image3d<i3d::GRAY16>& texture)
{
Vladimír Ulman
committed
#ifdef SAVE_INTERMEDIATE_IMAGES
intermediate.SaveImage("5_texture_filtered_resampled.ics");
Vladimír Ulman
committed
#endif
Vladimír Ulman
committed
float* p=intermediate.GetFirstVoxelAddr();
for (int z=0; z < (signed)intermediate.GetSizeZ(); ++z)
for (int y=0; y < (signed)intermediate.GetSizeY(); ++y)
for (int x=0; x < (signed)intermediate.GetSizeX(); ++x, ++p)
Vladimír Ulman
committed
{
//background signal:
float distSq=((float)x-110.f)*((float)x-110.f) + ((float)y-110.f)*((float)y-110.f);
*p+=150.f*expf(-0.5f * distSq / 2500.f);
Vladimír Ulman
committed
//uncertainty in the number of incoming photons
const float noiseMean = sqrtf(*p), // from statistics: shot noise = sqrt(signal)
noiseVar = noiseMean; // for Poisson distribution E(X) = D(X)
*p+=40.f*((float)GetRandomPoisson(noiseMean) - noiseVar);
Vladimír Ulman
committed
//constants are parameters of Andor iXon camera provided from vendor:
//photon shot noise: dark current
*p+=(float)GetRandomPoisson(0.06f);
//read-out noise:
// variance up to 25.f (old camera on ILBIT)
// variance about 1.f (for the new camera on ILBIT)
*p+=GetRandomGauss(480.f,20.f);
//*p+=530.f;
}
#ifdef SAVE_INTERMEDIATE_IMAGES
Vladimír Ulman
committed
intermediate.SaveImage("6_texture_filtered_resampled_finalized.ics");
Vladimír Ulman
committed
#endif
//obtain final GRAY16 image
Vladimír Ulman
committed
i3d::FloatToGrayNoWeight(intermediate,texture);
Vladimír Ulman
committed
}
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
void ActiveMesh::ConstructFF(FlowField<float> &FF)
{
//erase the flow field
//iterate:
// put displacement vectors
// smooth
//tests: TODO
//FF must be consistent
//oldVolPos and newVolPos must be of the same length
//erase
FF.x->GetVoxelData()=0;
FF.y->GetVoxelData()=0;
FF.z->GetVoxelData()=0;
//time savers...
const float xRes=FF.x->GetResolution().GetX();
const float yRes=FF.x->GetResolution().GetY();
const float zRes=FF.x->GetResolution().GetZ();
const float xOff=FF.x->GetOffset().x;
const float yOff=FF.x->GetOffset().y;
const float zOff=FF.x->GetOffset().z;
//time-savers for boundary checking...
const int maxX=(int)FF.x->GetSizeX()-1;
const int maxY=(int)FF.x->GetSizeY()-1;
const int maxZ=(int)FF.x->GetSizeZ()-1;
//time-savers for accessing neigbors...
const size_t xLine=FF.x->GetSizeX();
const size_t Slice=FF.x->GetSizeY() *xLine;
float* const ffx=FF.x->GetFirstVoxelAddr();
float* const ffy=FF.y->GetFirstVoxelAddr();
float* const ffz=FF.z->GetFirstVoxelAddr();
//inject displacements
for (size_t i=0; i < oldVolPos.size(); ++i)
const int x=(int)roundf( (oldVolPos[i].x-xOff) *xRes);
const int y=(int)roundf( (oldVolPos[i].y-yOff) *yRes);
const int z=(int)roundf( (oldVolPos[i].z-zOff) *zRes);
const float dx=newVolPos[i].x - oldVolPos[i].x;
const float dy=newVolPos[i].y - oldVolPos[i].y;
const float dz=newVolPos[i].z - oldVolPos[i].z;
if ((x > 0) && (y > 0) && (z > 0)
&& (x < maxX) && (y < maxY) && (z < maxZ))
{
ffx[z*Slice +y*xLine +x]=dx;
ffy[z*Slice +y*xLine +x]=dy;
ffz[z*Slice +y*xLine +x]=dz;
//smooth
i3d::GaussIIR(*FF.x,15.0f);
i3d::GaussIIR(*FF.y,15.0f);
i3d::GaussIIR(*FF.z,15.0f);
//multiply (to "correct" after normalized smoothing)
FF.x->GetVoxelData()*=1240.f;
FF.y->GetVoxelData()*=1240.f;
FF.z->GetVoxelData()*=1240.f;
Vladimír Ulman
committed
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
void ActiveMesh::ConstructFF_T(FlowField<float> &FF)
{
//erase the flow field
//add displacement vectors by "rendering" displacement tetrahedra
//smooth
//tests: TODO
//FF must be consistent
//oldVolPos and newVolPos must be of the same length
//length of oldVolPos*4 and length of VolID must be the same
//erase
FF.x->GetVoxelData()=0;
FF.y->GetVoxelData()=0;
FF.z->GetVoxelData()=0;
i3d::Image3d<i3d::GRAY16> imgCounts;
imgCounts.CopyMetaData(*FF.x);
imgCounts.GetVoxelData()=0;
//time savers...
const float xRes=FF.x->GetResolution().GetX();
const float yRes=FF.x->GetResolution().GetY();
const float zRes=FF.x->GetResolution().GetZ();
const float xOff=FF.x->GetOffset().x;
const float yOff=FF.x->GetOffset().y;
const float zOff=FF.x->GetOffset().z;
//time-savers for boundary checking...
const int maxX=(int)FF.x->GetSizeX()-1;
const int maxY=(int)FF.x->GetSizeY()-1;
const int maxZ=(int)FF.x->GetSizeZ()-1;
//time-savers for accessing neigbors...
const size_t xLine=FF.x->GetSizeX();
const size_t Slice=FF.x->GetSizeY() *xLine;
float* const ffx=FF.x->GetFirstVoxelAddr();
float* const ffy=FF.y->GetFirstVoxelAddr();
float* const ffz=FF.z->GetFirstVoxelAddr();
i3d::GRAY16* const ffC=imgCounts.GetFirstVoxelAddr();
//over all tetrahedra
for (size_t i=0; i < VolID.size(); i+=4)
{
//tetrahedron to drive positions in the FF
//(positions tetrahedron)
const Vector3F& v1=oldVolPos[VolID[i+0]];
const Vector3F& v2=oldVolPos[VolID[i+1]];
const Vector3F& v3=oldVolPos[VolID[i+2]];
const Vector3F& v4=oldVolPos[VolID[i+3]];
//now iterate over the tetrahedra:
for (float d=0.f; d <= 1.0f; d += 0.04f)
for (float c=0.f; c <= (1.0f-d); c += 0.04f)
for (float b=0.f; b <= (1.0f-d-c); b += 0.04f)
{
float a=1.0f -b -c -d;
//float-point coordinate:
Vector3F tmp;
tmp =a*v1;
tmp+=b*v2;
tmp+=c*v3;
tmp+=d*v4;
//pixel (integer) coordinate:
const int x=(int)roundf( (tmp.x-xOff) *xRes);
const int y=(int)roundf( (tmp.y-yOff) *yRes);
const int z=(int)roundf( (tmp.z-zOff) *zRes);
if ((x > 0) && (y > 0) && (z > 0)
&& (x < maxX) && (y < maxY) && (z < maxZ))
{
//tetrahedron to drive values to place at these positions
//(values tetrahedron)
const Vector3F dv1=newVolPos[VolID[i+0]] - v1;
const Vector3F dv2=newVolPos[VolID[i+1]] - v2;
const Vector3F dv3=newVolPos[VolID[i+2]] - v3;
const Vector3F dv4=newVolPos[VolID[i+3]] - v4;
//value
tmp =a*dv1;
tmp+=b*dv2;
tmp+=c*dv3;
tmp+=d*dv4;
ffx[z*Slice +y*xLine +x]+=tmp.x;
ffy[z*Slice +y*xLine +x]+=tmp.y;
ffz[z*Slice +y*xLine +x]+=tmp.z;
ffC[z*Slice +y*xLine +x]+=1;
}
}
}
//finish the averaging of FF
for (size_t i=0; i < imgCounts.GetImageSize(); ++i)
if (*(ffC+i))
{
*(ffx+i)/=float(*(ffC+i));
*(ffy+i)/=float(*(ffC+i));
*(ffz+i)/=float(*(ffC+i));
}
//imgCounts.SaveImage("counts.ics"); //TODO REMOVE
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
//a bit more of fine-tunning:
// make 2 rounds of 1px dilations into a copy image
// extract the added 2px wide shell
// widen the shell into another image with 2 rounds of 1px dilations
// smooth sigma=1px this wider shell
// mask/narrow the smoothed shell according to the previous shell
// and combine with the original FF
i3d::Image3d<i3d::GRAY16> tmp,shell,shellSmooth;
i3d::Image3d<float> tmpF;
tmpF=*FF.x;
tmpF.GetVoxelData()*=1000.f;
//tmpF.GetVoxelData()+=32768.f;
tmpF.GetVoxelData()+=30000.f;
i3d::FloatToGrayNoWeight(tmpF,shell);
tmpF.SaveImage("shell0_F.ics");
shell.SaveImage("shell0.ics");
// make 2 rounds of 1px dilations into a copy image
i3d::Dilation(shell,tmp,i3d::nb3D_o18);
i3d::Dilation(tmp,shell,i3d::nb3D_o18);
shell.SaveImage("shell1.ics");
// extract the added 2px wide shell
i3d::Dilation(shell,tmp,i3d::nb3D_o18);
i3d::Dilation(tmp,shell,i3d::nb3D_o18);
shell.SaveImage("shell2.ics");
GrayToFloat(shell,tmpF);
tmpF.SaveImage("shell2_F.ics");
tmpF.GetVoxelData()-=30000.f;
tmpF.GetVoxelData()/=1000.f;
tmpF.SaveImage("shell2_normalValues_F.ics");
// widen the shell into another image with 2 rounds of 1px dilations
// smooth sigma=1px this wider shell
// mask/narrow the smoothed shell according to the previous shell
// and combine with the original FF