Newer
Older
#include <iostream>
#include <fstream>
#include <map>
#include <i3d/draw.h>
#include <i3d/morphology.h>
#include <i3d/DistanceTransform.h>
#include <i3d/filters.h>
#include "../cmath3d_v/TriangleMesh_v.h"
#include "../src/rnd_generators.h"
#include "../src/texture/texture.h"
#undef min
#undef max
Vladimír Ulman
committed
//some debug-code enabling triggers
//#define SAVE_INTERMEDIATE_IMAGES
Vladimír Ulman
committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
//'multiple' should be ideally 10^desired_decimal_accuracy
int inline RoundTo(const float val, const float multiple=1000.f)
{
return ( int(floorf(val*multiple)) );
}
//puts v1 into Pos, with mPos being a helper structure preventing having
//v1 multiple times inside the Pos
long unsigned int Enlist(
const Vector3FC& v1,
std::vector<Vector3FC>& Pos,
std::map< int,std::map< int,std::map< int,long unsigned int > > >& mPos)
{
long unsigned int o1; //ret val
std::map< int,std::map< int,long unsigned int > >& mY=mPos[RoundTo(v1.x)];
if (mY.empty())
{
Pos.push_back(v1);
o1=Pos.size();
//add reference to this vertex in the mPos structure
std::map< int,long unsigned int > mZ;
mZ[RoundTo(v1.z)]=o1;
std::map< int,std::map< int,long unsigned int > > my;
my[RoundTo(v1.y)]=mZ;
mPos[RoundTo(v1.x)]=my;
}
else
{
std::map< int,long unsigned int >& mZ=mY[RoundTo(v1.y)];
if (mZ.empty())
{
Pos.push_back(v1);
o1=Pos.size();
//add reference to this vertex in the mPos structure
std::map< int,long unsigned int > mZ;
mZ[RoundTo(v1.z)]=o1;
mY[RoundTo(v1.y)]=mZ;
}
else
{
if (mZ[RoundTo(v1.z)] == 0)
{
Pos.push_back(v1);
o1=Pos.size();
//add reference to this vertex in the mPos structure
mZ[RoundTo(v1.z)]=o1;
}
else
{
o1=mZ[RoundTo(v1.z)];
}
}
}
return o1;
}
int ActiveMesh::ImportSTL(const char *filename)
{
Pos.clear();
ID.clear();
norm.clear();
//a helper map to (efficiently) search for already stored vertices inside Pos
std::map< int,std::map< int,std::map< int,long unsigned int > > > mPos;
// x y z offset+1 in Pos
//try to open the file
std::ifstream file(filename);
if (!file.is_open()) return 1;
//read the "header" line
char tmp[1024];
file >> tmp; //dangerous...
//check tmp for "solid" or complain
if (tmp[0] != 's'
|| tmp[1] != 'o'
|| tmp[2] != 'l'
|| tmp[3] != 'i'
|| tmp[4] != 'd') { file.close(); return(2); }
//read (and skip) the rest of the header line
file.ignore(10240,'\n');
//read facet by facet
while (file >> tmp)
{
//check tmp for "facet" or "endsolid" or complain
if (tmp[0] != 'f'
|| tmp[1] != 'a'
|| tmp[2] != 'c'
|| tmp[3] != 'e'
|| tmp[4] != 't')
{
//no new face starting, end of file then?
if (tmp[0] != 'e'
|| tmp[1] != 'n'
|| tmp[2] != 'd'
|| tmp[3] != 's'
|| tmp[4] != 'o') { file.close(); return(3); }
else break;
}
//read normal
file >> tmp; //"normal" keyword
float x,y,z;
file >> x >> y >> z;
Vector3F normal(x,y,z);
//read triangle vertices
file >> tmp;
//check tmp for "outer" or complain
if (tmp[0] != 'o'
|| tmp[1] != 'u'
|| tmp[2] != 't'
|| tmp[3] != 'e'
|| tmp[4] != 'r') { file.close(); return(4); }
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
file >> tmp; //"loop" keyword
file >> tmp; //"vertex" keyword
file >> x >> y >> z;
Vector3FC v1(x,y,z);
file >> tmp;
file >> x >> y >> z;
Vector3FC v2(x,y,z);
file >> tmp;
file >> x >> y >> z;
Vector3FC v3(x,y,z);
file >> tmp; //"endloop" keyword
file >> tmp; //"endfacet" keyword
//add this triangle to the ActiveMesh data structures
//we need to:
// scale, round and use this for comparison against already
// discovered vertices to avoid for having the same vertex saved twice
long unsigned int o1,o2,o3;
o1=Enlist(v1,Pos,mPos);
o2=Enlist(v2,Pos,mPos);
o3=Enlist(v3,Pos,mPos);
//
// three offsets to the Pos array should be output
// add them to the ID array
ID.push_back(o1-1);
ID.push_back(o2-1);
ID.push_back(o3-1);
// add normal to the norm array
norm.push_back(normal);
/*
std::cout << "v1: " << v1.x << "," << v1.y << "," << v1.z << " -- o1=" << o1 << "\n";
std::cout << "v2: " << v2.x << "," << v2.y << "," << v2.z << " -- o2=" << o2 << "\n";
std::cout << "v3: " << v3.x << "," << v3.y << "," << v3.z << " -- o3=" << o3 << "\n";
std::cout << "normal: " << normal.x << "," << normal.y << "," << normal.z << "\n\n";
*/
}
file.close();
return(0);
}
int ActiveMesh::ExportSTL(const char *filename)
{
//try to open the file
std::ofstream file(filename);
if (!file.is_open()) return(1);
file << "solid Vladimir Ulman - meshSurface testing app\n";
for (unsigned int i=0; i < ID.size(); i+=3)
{
file << "facet normal " << norm[i/3].x << " " << norm[i/3].y << " " << norm[i/3].z << "\n";
file << "outer loop\n";
file << "vertex " << Pos[ID[i+0]].x << " " << Pos[ID[i+0]].y << " " << Pos[ID[i+0]].z << "\n";
file << "vertex " << Pos[ID[i+1]].x << " " << Pos[ID[i+1]].y << " " << Pos[ID[i+1]].z << "\n";
file << "vertex " << Pos[ID[i+2]].x << " " << Pos[ID[i+2]].y << " " << Pos[ID[i+2]].z << "\n";
file << "endloop\nendfacet\n";
}
file.close();
return(0);
}
int ActiveMesh::ImportVTK(const char *filename) //surface version
{
Pos.clear();
ID.clear();
norm.clear();
//try to open the file
std::ifstream file(filename);
if (!file.is_open()) return 1;
//read the "header" line
char tmp[1024];
file >> tmp >> tmp; //dangerous...
//check tmp for "vtk" or complain
if (tmp[0] != 'v'
|| tmp[1] != 't'
|| tmp[2] != 'k') { file.close(); return(2); }
//read (and skip) the rest of the header line
file.ignore(10240,'\n');
//ignore "vtk output"
file.ignore(10240,'\n');
//read "ASCII"
file >> tmp;
if (tmp[0] != 'A'
|| tmp[1] != 'S'
|| tmp[2] != 'C'
|| tmp[3] != 'I'
|| tmp[4] != 'I') { file.close(); return(3); }
file.ignore(10240,'\n');
//search until DATASET lines is found
int counter=0;
file >> tmp;
file.ignore(10240,'\n');
while (tmp[0] != 'D' || tmp[1] != 'A' || tmp[2] != 'T'
|| tmp[3] != 'A' || tmp[4] != 'S' || tmp[5] != 'E')
{
file >> tmp;
file.ignore(10240,'\n');
++counter;
if (counter == 10) { file.close(); return(35); }
}
//read points header
int itemCount;
file >> tmp >> itemCount;;
if (tmp[0] != 'P'
|| tmp[1] != 'O'
|| tmp[2] != 'I'
|| tmp[3] != 'N'
|| tmp[4] != 'T'
|| tmp[5] != 'S') { file.close(); return(4); }
file.ignore(10240,'\n');
//std::cout << "reading " << itemCount << " point coordinates\n";
Pos.reserve(itemCount);
//read all points...
float x,y,z;
while (itemCount > 0 && file >> x)
{
file >> y >> z;
//... and save them
Vector3FC v1(x,y,z);
Vladimir Ulman
committed
//v1*=100.f;
Pos.push_back(v1);
--itemCount;
}
//std::cout << "last coordinate was: " << x << "," << y << "," << z << "\n";
//prepare "information about faces normals"
Vector3F fictiveNormal(1.f,0.f,0.f);
//read polyhedra header
file >> tmp >> itemCount;
if ((tmp[0] != 'P'
|| tmp[1] != 'O'
|| tmp[2] != 'L'
|| tmp[3] != 'Y'
|| tmp[4] != 'G'
|| tmp[5] != 'O'
|| tmp[6] != 'N'
|| tmp[7] != 'S')
&&
(tmp[0] != 'C'
|| tmp[1] != 'E'
|| tmp[2] != 'L'
|| tmp[3] != 'L'
|| tmp[4] != 'S')) { file.close(); return(5); }
file.ignore(10240,'\n');
//std::cout << "reading " << itemCount << " triangles\n";
ID.reserve(3*itemCount);
norm.reserve(itemCount);
//read all polyhedra vertices
int ignore,v1,v2,v3;
while (itemCount > 0 && file >> ignore && ignore == 3)
{
file >> v1 >> v2 >> v3;
//save v1,v2,v3 (TODO: if not already saved...)
//make triangles use CW winding order
ID.push_back(v1);
ID.push_back(v3);
ID.push_back(v2);
norm.push_back(fictiveNormal);
--itemCount;
}
//std::cout << "last triangle was: " << v1 << "," << v2 << "," << v3 << "\n";
file.close();
return(0);
}
int ActiveMesh::ImportVTK_Volumetric(const char *filename,bool saveAlsoTetrahedra)
{
Pos.clear();
ID.clear();
norm.clear();
if (saveAlsoTetrahedra) VolID.clear();
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
//try to open the file
std::ifstream file(filename);
if (!file.is_open()) return 1;
//read the "header" line
char tmp[1024];
file >> tmp >> tmp; //dangerous...
//check tmp for "vtk" or complain
if (tmp[0] != 'v'
|| tmp[1] != 't'
|| tmp[2] != 'k') { file.close(); return(2); }
//read (and skip) the rest of the header line
file.ignore(10240,'\n');
//ignore "vtk output"
file.ignore(10240,'\n');
//read "ASCII"
file >> tmp;
if (tmp[0] != 'A'
|| tmp[1] != 'S'
|| tmp[2] != 'C'
|| tmp[3] != 'I'
|| tmp[4] != 'I') { file.close(); return(3); }
file.ignore(10240,'\n');
//search until DATASET lines is found
int counter=0;
file >> tmp;
file.ignore(10240,'\n');
while (tmp[0] != 'D' || tmp[1] != 'A' || tmp[2] != 'T'
|| tmp[3] != 'A' || tmp[4] != 'S' || tmp[5] != 'E')
{
file >> tmp;
file.ignore(10240,'\n');
++counter;
if (counter == 10) { file.close(); return(35); }
}
//read points header
int itemCount;
file >> tmp >> itemCount;;
if (tmp[0] != 'P'
|| tmp[1] != 'O'
|| tmp[2] != 'I'
|| tmp[3] != 'N'
|| tmp[4] != 'T'
|| tmp[5] != 'S') { file.close(); return(4); }
file.ignore(10240,'\n');
//std::cout << "reading " << itemCount << " point coordinates\n";
Pos.reserve(itemCount);
//read all points...
float x,y,z;
while (itemCount > 0 && file >> x)
{
file >> y >> z;
//... and save them
Vector3FC v1(x,y,z);
Vladimir Ulman
committed
//v1*=100.f;
Pos.push_back(v1);
--itemCount;
}
//std::cout << "last coordinate was: " << x << "," << y << "," << z << "\n";
//prepare "information about faces normals"
Vector3F fictiveNormal(1.f,0.f,0.f);
//read polyhedra header
file >> tmp >> itemCount;
if (tmp[0] != 'C'
|| tmp[1] != 'E'
|| tmp[2] != 'L'
|| tmp[3] != 'L'
|| tmp[4] != 'S') { file.close(); return(5); }
file.ignore(10240,'\n');
//std::cout << "reading " << itemCount << " polyhedra\n";
ID.reserve(3*itemCount);
norm.reserve(itemCount);
//read all polyhedra vertices
int ignore,v1,v2,v3,v4;
while (itemCount > 0 && file >> ignore && ignore == 4)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
{
file >> v1 >> v2 >> v3 >> v4;
//save v1,v2,v3 (TODO: if not already saved...)
ID.push_back(v1);
ID.push_back(v2);
ID.push_back(v3);
norm.push_back(fictiveNormal);
//save v1,v2,v4 (TODO: if not already saved...)
ID.push_back(v1);
ID.push_back(v2);
ID.push_back(v4);
norm.push_back(fictiveNormal);
//save v1,v4,v3 (TODO: if not already saved...)
ID.push_back(v1);
ID.push_back(v4);
ID.push_back(v3);
norm.push_back(fictiveNormal);
//save v4,v2,v3 (TODO: if not already saved...)
ID.push_back(v4);
ID.push_back(v2);
ID.push_back(v3);
norm.push_back(fictiveNormal);
if (saveAlsoTetrahedra)
{
VolID.push_back(v1);
VolID.push_back(v2);
VolID.push_back(v3);
VolID.push_back(v4);
}
--itemCount;
}
//std::cout << "last polyhedron was: " << v1 << "," << v2 << "," << v3 << "," << v4 << "\n";
file.close();
return(0);
}
Vladimir Ulman
committed
int ActiveMesh::ImportVTK_Ftree(const char *filename,const float stretch,bool resetMesh)
const int PointsOnRadiusPeriphery=10;
Vladimir Ulman
committed
const float radiusCorrection=stretch;
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
if (resetMesh)
{
Pos.clear();
ID.clear();
norm.clear();
}
//local/temporary list of vertices of segments that make up the f-tree
//later, we convert these to triangles and save these guys instead
fPoints.clear();
segFromPoint.clear();
segToPoint.clear();
segFromRadius.clear();
//try to open the file
std::ifstream file(filename);
if (!file.is_open()) return 1;
//read the "header" line
char tmp[1024];
file >> tmp >> tmp; //dangerous...
//check tmp for "vtk" or complain
if (tmp[0] != 'v'
|| tmp[1] != 't'
|| tmp[2] != 'k') { file.close(); return(2); }
//read (and skip) the rest of the header line
file.ignore(10240,'\n');
//ignore "vtk output"
file.ignore(10240,'\n');
//read "ASCII"
file >> tmp;
if (tmp[0] != 'A'
|| tmp[1] != 'S'
|| tmp[2] != 'C'
|| tmp[3] != 'I'
|| tmp[4] != 'I') { file.close(); return(3); }
file.ignore(10240,'\n');
//search until DATASET lines is found
int counter=0;
file >> tmp;
while (tmp[0] != 'D' || tmp[1] != 'A' || tmp[2] != 'T'
|| tmp[3] != 'A' || tmp[4] != 'S' || tmp[5] != 'E')
{
file >> tmp;
file.ignore(10240,'\n');
++counter;
if (counter == 10) { file.close(); return(35); }
}
//read points header
int itemCount;
file >> tmp >> itemCount;;
if (tmp[0] != 'P'
|| tmp[1] != 'O'
|| tmp[2] != 'I'
|| tmp[3] != 'N'
|| tmp[4] != 'T'
|| tmp[5] != 'S') { file.close(); return(4); }
file.ignore(10240,'\n');
//std::cout << "reading " << itemCount << " point coordinates\n";
fPoints.reserve(itemCount);
//read all points...
float x,y,z;
while (itemCount > 0 && file >> x)
{
file >> y >> z;
//... and save them
Vector3FC v1(x,y,z);
Vladimir Ulman
committed
//v1*=100.f;
fPoints.push_back(v1);
--itemCount;
}
//std::cout << "last coordinate was: " << x << "," << y << "," << z << "\n";
//read segments header
file >> tmp >> itemCount;
if (tmp[0] != 'C'
|| tmp[1] != 'E'
|| tmp[2] != 'L'
|| tmp[3] != 'L'
|| tmp[4] != 'S') { file.close(); return(5); }
file.ignore(10240,'\n');
//std::cout << "reading " << itemCount << " segments\n";
segFromPoint.reserve(itemCount);
segToPoint.reserve(itemCount);
segFromRadius.reserve(itemCount);
//read all segments vertices
int ignore,v1,v2;
while (itemCount > 0 && file >> ignore && ignore == 2)
{
file >> v1 >> v2;
segFromPoint.push_back(v1);
segToPoint.push_back(v2);
--itemCount;
}
//std::cout << "last segment was: " << v1 << "," << v2 << "\n";
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
//"ignore" cell types header, body
file >> tmp >> itemCount;
if (tmp[0] != 'C'
|| tmp[1] != 'E'
|| tmp[2] != 'L'
|| tmp[3] != 'L'
|| tmp[4] != '_'
|| tmp[5] != 'T'
|| tmp[6] != 'Y') { file.close(); return(6); }
file.ignore(10240,'\n');
while (itemCount > 0)
{
file.ignore(10240,'\n');
--itemCount;
}
//read radii, i.e. CELL_DATA header
file >> tmp >> itemCount;
if (tmp[0] != 'C'
|| tmp[1] != 'E'
|| tmp[2] != 'L'
|| tmp[3] != 'L'
|| tmp[4] != '_'
|| tmp[5] != 'D'
|| tmp[6] != 'A') { file.close(); return(7); }
file.ignore(10240,'\n');
file.ignore(10240,'\n'); //ignore SCALARS..
file.ignore(10240,'\n'); //ignore LOOKUP_TABLE
//read the radii
v1=0;
while (itemCount > 0 && file >> x)
{
segFromRadius.push_back(x*radiusCorrection);
--itemCount;
++v1;
}
file.close();
//now widen segments and save triangles...
//prepare "information about faces normals"
Vector3F fictiveNormal(1.f,0.f,0.f);
size_t firstRadiusPoint=Pos.size();
PointsFirstOffset=firstRadiusPoint;
//for all bending points except the last one (tip)
for (unsigned int i=0; i < segFromPoint.size(); ++i)
{
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
//we need to construct rotation matrix that would
//rotate points on a circle which lays in the XZ plane
//(Y axis is normal to it then) such that the points
//would lay in the plane to which this new Y axis
//would be normal
//
//new Y axis
Vector3F nYaxis=fPoints[segToPoint[i]];
if (i == 0) nYaxis-=fPoints[segFromPoint[i]];
else
{
nYaxis-=fPoints[segFromPoint[i-1]];
nYaxis/=2.f; //unnecessary scaling
}
Vector3F nZaxis(0.f,1.f,0.f); //in fact it is original Yaxis _for now_
Vector3F nXaxis;
//new X axis is perpendicular to the original and new Y axis
Mul(nYaxis,nZaxis,nXaxis);
//new Z axis is perpendicular to the new X and Y axes
Mul(nYaxis,nXaxis,nZaxis);
//normalize...
nXaxis/=nXaxis.Len();
nZaxis/=nZaxis.Len();
//now render the points on the circle and project them into the scene
for (int p=0; p < PointsOnRadiusPeriphery; ++p)
{
//the point in its original position
float x=segFromRadius[i]*cosf(6.28f*float(p)/float(PointsOnRadiusPeriphery));
float z=segFromRadius[i]*sinf(6.28f*float(p)/float(PointsOnRadiusPeriphery));
//rotate
Vector3FC V(x*nXaxis);
V+=z*nZaxis;
//shift to the centre and save
V+=fPoints[segFromPoint[i]];
Pos.push_back(V);
}
}
//finally, add the tip point
Pos.push_back(fPoints[segToPoint.back()]);
//now create triangles for all segment strips
//except the last one (that leads to the tip)
for (unsigned int i=1; i < segFromPoint.size(); ++i)
{
int p=0;
for (; p < PointsOnRadiusPeriphery-1; ++p)
{
ID.push_back(firstRadiusPoint+p);
ID.push_back(firstRadiusPoint+p+1);
ID.push_back(firstRadiusPoint+p+PointsOnRadiusPeriphery);
norm.push_back(fictiveNormal);
ID.push_back(firstRadiusPoint+p+PointsOnRadiusPeriphery+1);
ID.push_back(firstRadiusPoint+p+PointsOnRadiusPeriphery);
ID.push_back(firstRadiusPoint+p+1);
norm.push_back(fictiveNormal);
}
ID.push_back(firstRadiusPoint+p);
ID.push_back(firstRadiusPoint);
ID.push_back(firstRadiusPoint+p+PointsOnRadiusPeriphery);
norm.push_back(fictiveNormal);
ID.push_back(firstRadiusPoint +PointsOnRadiusPeriphery);
ID.push_back(firstRadiusPoint+p+PointsOnRadiusPeriphery);
ID.push_back(firstRadiusPoint);
norm.push_back(fictiveNormal);
firstRadiusPoint+=PointsOnRadiusPeriphery;
}
//the last segment...
int p=0;
for (; p < PointsOnRadiusPeriphery-1; ++p)
{
ID.push_back(firstRadiusPoint+p);
ID.push_back(firstRadiusPoint+p+1);
ID.push_back(firstRadiusPoint+PointsOnRadiusPeriphery);
norm.push_back(fictiveNormal);
}
ID.push_back(firstRadiusPoint+p);
ID.push_back(firstRadiusPoint);
ID.push_back(firstRadiusPoint+PointsOnRadiusPeriphery);
norm.push_back(fictiveNormal);
void ActiveMesh::RenderMask(i3d::Image3d<i3d::GRAY16>& mask,const bool showTriangles)
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
{
//time savers: resolution
const float xRes=mask.GetResolution().GetX();
const float yRes=mask.GetResolution().GetY();
const float zRes=mask.GetResolution().GetZ();
//time savers: offset
const float xOff=mask.GetOffset().x;
const float yOff=mask.GetOffset().y;
const float zOff=mask.GetOffset().z;
//over all triangles
for (unsigned int i=0; i < ID.size()/3; ++i)
//for (unsigned int i=0; i < 15; ++i)
{
const Vector3F& v1=Pos[ID[3*i+0]];
const Vector3F& v2=Pos[ID[3*i+1]];
const Vector3F& v3=Pos[ID[3*i+2]];
//sweeping (and rendering) the triangle
for (float c=0.f; c <= 1.0f; c += 0.1f)
for (float b=0.f; b <= (1.0f-c); b += 0.1f)
{
float a=1.0f -b -c;
Vector3F v=a*v1;
v+=b*v2;
v+=c*v3;
//std::cout << "ID #" << i << ": v=(" << v.x << "," << v.y << "," << v.z << ")\n";
//nearest neighbor pixel coordinate
const int x=(int)roundf( (v.x-xOff) *xRes);
const int y=(int)roundf( (v.y-yOff) *yRes);
const int z=(int)roundf( (v.z-zOff) *zRes);
short val=(showTriangles)? short(i%5 *30 +100) : 100;
if (mask.Include(x,y,z)) mask.SetVoxel(x,y,z,val);
}
}
//this floods cell exterior from the image corner
i3d::Image3d<i3d::GRAY16> tmpMask(mask);
i3d::Dilation(tmpMask,mask,i3d::nb3D_o18);
i3d::FloodFill(mask,(i3d::GRAY16)50,0);
//this removes the flooding while filling
//everything else (and closing holes in this was)
i3d::GRAY16* p=mask.GetFirstVoxelAddr();
i3d::GRAY16* const pL=p+mask.GetImageSize();
while (p != pL)
{
*p=(*p != 50)? std::max(*p,i3d::GRAY16(100)) : 0;
++p;
}
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
}
void ActiveMesh::RenderMaskB(i3d::Image3d<i3d::GRAY16>& mask)
{
//time savers: resolution
const float xRes=mask.GetResolution().GetX();
const float yRes=mask.GetResolution().GetY();
const float zRes=mask.GetResolution().GetZ();
//time savers: offset
const float xOff=mask.GetOffset().x;
const float yOff=mask.GetOffset().y;
const float zOff=mask.GetOffset().z;
//over all triangles
//for (unsigned int i=0; i < ID.size()/3; ++i)
for (unsigned int i=0; i < 15; ++i)
{
const Vector3F& v1=Pos[ID[3*i+0]];
const Vector3F& v2=Pos[ID[3*i+1]];
const Vector3F& v3=Pos[ID[3*i+2]];
//Vector3F e12=v2-v1; //ID=0
//Vector3F e13=v3-v1; //ID=1
//Vector3F e23=v3-v2; //ID=2
Vector3F edges[3]={v2-v1,v3-v1,v3-v2};
short order[3]={0,1,2};
if (edges[1].LenQ() < edges[0].LenQ()) { order[0]=1; order[1]=0; }
if (edges[2].LenQ() < edges[order[1]].LenQ())
{
order[2]=order[1];
order[1]=2;
if (edges[2].LenQ() < edges[order[0]].LenQ())
{
order[1]=order[0];
order[0]=2;
}
}
//point within a triangle will of the form: vv + b*vb + c*vc
//vb is the shortest edge, vc is the longest edge
//vv is their common vertex
//vb,vc are oriented outward from this vertex
Vector3F vv,vb,vc;
if (order[0]==0 && order[2]==1)
{
//order[0] "points" at shortest edge
vv=v1;
vb=edges[0];
vc=edges[1];
}
else
if (order[0]==0 && order[2]==2)
{
vv=v2;
vb=-edges[0];
vc=edges[2];
}
else
if (order[0]==1 && order[2]==0)
{
vv=v1;
vb=edges[1];
vc=edges[0];
}
else
if (order[0]==1 && order[2]==2)
{
vv=v3;
vb=-edges[1];
vc=-edges[2];
}
else
if (order[0]==2 && order[2]==0)
{
vv=v2;
vb=edges[2];
vc=-edges[0];
}
else
if (order[0]==2 && order[2]==1)
{
vv=v3;
vb=-edges[2];
vc=-edges[1];
}
//optimal increment for the short and long edge, respectively
float db=(vb.x*xRes > vb.y*yRes)? vb.x*xRes : vb.y*yRes;
db=(vb.z*zRes > db)? vb.z*zRes : db;
db=1.f/db;
float dc=(vc.x*xRes > vc.y*yRes)? vc.x*xRes : vc.y*yRes;
dc=(vc.z*zRes > dc)? vc.z*zRes : dc;
dc=1.f/dc;
std::cout << "\nID #" << i << ": v1=(" << v1.x << "," << v1.y << "," << v1.z << ")\n";
std::cout << "ID #" << i << ": v2=(" << v2.x << "," << v2.y << "," << v2.z << ")\n";
std::cout << "ID #" << i << ": v3=(" << v3.x << "," << v3.y << "," << v3.z << ")\n";
//sweeping (and rendering) the triangle
for (float c=0.f; c <= 1.0f; c += dc)
for (float b=0.f; b <= (1.0f-c); b += db)
{
Vector3F v=vv;
v+=b*vb;
v+=c*vc;
std::cout << "ID #" << i << ": v=(" << v.x << "," << v.y << "," << v.z << ")\n";
//nearest neighbor pixel coordinate
const int x=(int)roundf( (v.x-xOff) *xRes);
const int y=(int)roundf( (v.y-yOff) *yRes);
const int z=(int)roundf( (v.z-zOff) *zRes);
if (mask.Include(x,y,z)) mask.SetVoxel(x,y,z,short(i));
}
}
}
void ActiveMesh::RenderOneTimeTexture(const i3d::Image3d<i3d::GRAY16>& mask,
i3d::Image3d<i3d::GRAY16>& texture)
{
i3d::Image3d<float> dt;
i3d::GrayToFloat(mask,dt);
#ifdef SAVE_INTERMEDIATE_IMAGES
i3d::Image3d<float> perlinInner,perlinOutside;
perlinInner.CopyMetaData(mask);
DoPerlin3D(perlinInner,5.0,0.8*1.5,0.7*1.5,6);
#ifdef SAVE_INTERMEDIATE_IMAGES
//perlinInner.SaveImage("2_PerlinAlone_Inner.ics");
#ifdef SAVE_INTERMEDIATE_IMAGES
//perlinOutside.SaveImage("2_PerlinAlone_Outside.ics");
i3d::Image3d<i3d::GRAY16> erroded;
i3d::ErosionO(mask,erroded,1);
//initial object intensity levels
float* p=dt.GetFirstVoxelAddr();
float* const pL=p+dt.GetImageSize();
const float* pI=perlinInner.GetFirstVoxelAddr();
const float* pO=perlinOutside.GetFirstVoxelAddr();
const i3d::GRAY16* er=erroded.GetFirstVoxelAddr();
//are we within the mask?
if (*p > 0.f)
if (*p < 0.3f || *er == 0) *p=2000.f + 5000.f*(*pO); //corona
if (*er == 0) *p=2000.f; //std::max(*p,2000.f); //corona
if (*p < 0.f) *p=0.f;
#ifdef SAVE_INTERMEDIATE_IMAGES
perlinInner.DisposeData();
perlinOutside.DisposeData();
erroded.DisposeData();
#ifdef SAVE_INTERMEDIATE_IMAGES
dt.SaveImage("4_texture_filtered.ics");
//downsample now:
float factor[3]={1.f,1.f,0.125f};
i3d::Image3d<float>* tmp=NULL;
i3d::lanczos_resample(&dt,tmp,factor,2);
#ifdef SAVE_INTERMEDIATE_IMAGES
tmp->SaveImage("5_texture_filtered_resampled.ics");
#endif
for (int z=0; z < (signed)dt.GetSizeZ(); ++z)
for (int y=0; y < (signed)dt.GetSizeY(); ++y)
for (int x=0; x < (signed)dt.GetSizeX(); ++x, ++p)
//background signal:
float distSq=((float)x-110.f)*((float)x-110.f) + ((float)y-110.f)*((float)y-110.f);
//uncertainty in the number of incoming photons
const float noiseMean = sqrtf(*p), // from statistics: shot noise = sqrt(signal)
noiseVar = noiseMean; // for Poisson distribution E(X) = D(X)
*p+=40.f*((float)GetRandomPoisson(noiseMean) - noiseVar);