Newer
Older
#include <iostream>
#include <fstream>
#include <map>
#include <i3d/draw.h>
#include <i3d/morphology.h>
#include <i3d/DistanceTransform.h>
#include <i3d/filters.h>
#include "../cmath3d_v/TriangleMesh_v.h"
#include "../src/rnd_generators.h"
#undef min
#undef max
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
//'multiple' should be ideally 10^desired_decimal_accuracy
int inline RoundTo(const float val, const float multiple=1000.f)
{
return ( int(floorf(val*multiple)) );
}
//puts v1 into Pos, with mPos being a helper structure preventing having
//v1 multiple times inside the Pos
long unsigned int Enlist(
const Vector3FC& v1,
std::vector<Vector3FC>& Pos,
std::map< int,std::map< int,std::map< int,long unsigned int > > >& mPos)
{
long unsigned int o1; //ret val
std::map< int,std::map< int,long unsigned int > >& mY=mPos[RoundTo(v1.x)];
if (mY.empty())
{
Pos.push_back(v1);
o1=Pos.size();
//add reference to this vertex in the mPos structure
std::map< int,long unsigned int > mZ;
mZ[RoundTo(v1.z)]=o1;
std::map< int,std::map< int,long unsigned int > > my;
my[RoundTo(v1.y)]=mZ;
mPos[RoundTo(v1.x)]=my;
}
else
{
std::map< int,long unsigned int >& mZ=mY[RoundTo(v1.y)];
if (mZ.empty())
{
Pos.push_back(v1);
o1=Pos.size();
//add reference to this vertex in the mPos structure
std::map< int,long unsigned int > mZ;
mZ[RoundTo(v1.z)]=o1;
mY[RoundTo(v1.y)]=mZ;
}
else
{
if (mZ[RoundTo(v1.z)] == 0)
{
Pos.push_back(v1);
o1=Pos.size();
//add reference to this vertex in the mPos structure
mZ[RoundTo(v1.z)]=o1;
}
else
{
o1=mZ[RoundTo(v1.z)];
}
}
}
return o1;
}
int ActiveMesh::ImportSTL(const char *filename)
{
Pos.clear();
ID.clear();
norm.clear();
//a helper map to (efficiently) search for already stored vertices inside Pos
std::map< int,std::map< int,std::map< int,long unsigned int > > > mPos;
// x y z offset+1 in Pos
//try to open the file
std::ifstream file(filename);
if (!file.is_open()) return 1;
//read the "header" line
char tmp[1024];
file >> tmp; //dangerous...
//check tmp for "solid" or complain
if (tmp[0] != 's'
|| tmp[1] != 'o'
|| tmp[2] != 'l'
|| tmp[3] != 'i'
|| tmp[4] != 'd') { file.close(); return(2); }
//read (and skip) the rest of the header line
file.ignore(10240,'\n');
//read facet by facet
while (file >> tmp)
{
//check tmp for "facet" or "endsolid" or complain
if (tmp[0] != 'f'
|| tmp[1] != 'a'
|| tmp[2] != 'c'
|| tmp[3] != 'e'
|| tmp[4] != 't')
{
//no new face starting, end of file then?
if (tmp[0] != 'e'
|| tmp[1] != 'n'
|| tmp[2] != 'd'
|| tmp[3] != 's'
|| tmp[4] != 'o') { file.close(); return(3); }
else break;
}
//read normal
file >> tmp; //"normal" keyword
float x,y,z;
file >> x >> y >> z;
Vector3F normal(x,y,z);
//read triangle vertices
file >> tmp;
//check tmp for "outer" or complain
if (tmp[0] != 'o'
|| tmp[1] != 'u'
|| tmp[2] != 't'
|| tmp[3] != 'e'
|| tmp[4] != 'r') { file.close(); return(4); }
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
file >> tmp; //"loop" keyword
file >> tmp; //"vertex" keyword
file >> x >> y >> z;
Vector3FC v1(x,y,z);
file >> tmp;
file >> x >> y >> z;
Vector3FC v2(x,y,z);
file >> tmp;
file >> x >> y >> z;
Vector3FC v3(x,y,z);
file >> tmp; //"endloop" keyword
file >> tmp; //"endfacet" keyword
//add this triangle to the ActiveMesh data structures
//we need to:
// scale, round and use this for comparison against already
// discovered vertices to avoid for having the same vertex saved twice
long unsigned int o1,o2,o3;
o1=Enlist(v1,Pos,mPos);
o2=Enlist(v2,Pos,mPos);
o3=Enlist(v3,Pos,mPos);
//
// three offsets to the Pos array should be output
// add them to the ID array
ID.push_back(o1-1);
ID.push_back(o2-1);
ID.push_back(o3-1);
// add normal to the norm array
norm.push_back(normal);
/*
std::cout << "v1: " << v1.x << "," << v1.y << "," << v1.z << " -- o1=" << o1 << "\n";
std::cout << "v2: " << v2.x << "," << v2.y << "," << v2.z << " -- o2=" << o2 << "\n";
std::cout << "v3: " << v3.x << "," << v3.y << "," << v3.z << " -- o3=" << o3 << "\n";
std::cout << "normal: " << normal.x << "," << normal.y << "," << normal.z << "\n\n";
*/
}
file.close();
return(0);
}
int ActiveMesh::ExportSTL(const char *filename)
{
//try to open the file
std::ofstream file(filename);
if (!file.is_open()) return(1);
file << "solid Vladimir Ulman - meshSurface testing app\n";
for (unsigned int i=0; i < ID.size(); i+=3)
{
file << "facet normal " << norm[i/3].x << " " << norm[i/3].y << " " << norm[i/3].z << "\n";
file << "outer loop\n";
file << "vertex " << Pos[ID[i+0]].x << " " << Pos[ID[i+0]].y << " " << Pos[ID[i+0]].z << "\n";
file << "vertex " << Pos[ID[i+1]].x << " " << Pos[ID[i+1]].y << " " << Pos[ID[i+1]].z << "\n";
file << "vertex " << Pos[ID[i+2]].x << " " << Pos[ID[i+2]].y << " " << Pos[ID[i+2]].z << "\n";
file << "endloop\nendfacet\n";
}
file.close();
return(0);
}
int ActiveMesh::ImportVTK(const char *filename) //surface version
{
Pos.clear();
ID.clear();
norm.clear();
//try to open the file
std::ifstream file(filename);
if (!file.is_open()) return 1;
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//read the "header" line
char tmp[1024];
file >> tmp >> tmp; //dangerous...
//check tmp for "vtk" or complain
if (tmp[0] != 'v'
|| tmp[1] != 't'
|| tmp[2] != 'k') { file.close(); return(2); }
//read (and skip) the rest of the header line
file.ignore(10240,'\n');
//ignore "vtk output"
file.ignore(10240,'\n');
//read "ASCII"
file >> tmp;
if (tmp[0] != 'A'
|| tmp[1] != 'S'
|| tmp[2] != 'C'
|| tmp[3] != 'I'
|| tmp[4] != 'I') { file.close(); return(3); }
file.ignore(10240,'\n');
//ignore "DATASET POLYDATA"
file.ignore(10240,'\n');
//read points header
int itemCount;
file >> tmp >> itemCount;;
if (tmp[0] != 'P'
|| tmp[1] != 'O'
|| tmp[2] != 'I'
|| tmp[3] != 'N'
|| tmp[4] != 'T'
|| tmp[5] != 'S') { file.close(); return(4); }
file.ignore(10240,'\n');
std::cout << "reading " << itemCount << " point coordinates\n";
Pos.reserve(itemCount);
//read all points...
float x,y,z;
while (itemCount > 0 && file >> x)
{
file >> y >> z;
//... and save them
Vector3FC v1(x,y,z);
v1*=100.f;
Pos.push_back(v1);
--itemCount;
}
std::cout << "last coordinate was: " << x << "," << y << "," << z << "\n";
//prepare "information about faces normals"
Vector3F fictiveNormal(1.f,0.f,0.f);
//read polyhedra header
file >> tmp >> itemCount;
if (tmp[0] != 'P'
|| tmp[1] != 'O'
|| tmp[2] != 'L'
|| tmp[3] != 'Y'
|| tmp[4] != 'G'
|| tmp[5] != 'O'
|| tmp[6] != 'N'
|| tmp[7] != 'S') { file.close(); return(5); }
file.ignore(10240,'\n');
std::cout << "reading " << itemCount << " triangles\n";
ID.reserve(3*itemCount);
norm.reserve(itemCount);
//read all polyhedra vertices
int ignore,v1,v2,v3;
while (itemCount > 0 && file >> ignore && ignore == 3)
{
file >> v1 >> v2 >> v3;
//save v1,v2,v3 (TODO: if not already saved...)
//make triangles use CW winding order
ID.push_back(v1);
ID.push_back(v3);
ID.push_back(v2);
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
norm.push_back(fictiveNormal);
--itemCount;
}
std::cout << "last triangle was: " << v1 << "," << v2 << "," << v3 << "\n";
file.close();
return(0);
}
int ActiveMesh::ImportVTK_Volumetric(const char *filename)
{
Pos.clear();
ID.clear();
norm.clear();
//try to open the file
std::ifstream file(filename);
if (!file.is_open()) return 1;
//read the "header" line
char tmp[1024];
file >> tmp >> tmp; //dangerous...
//check tmp for "vtk" or complain
if (tmp[0] != 'v'
|| tmp[1] != 't'
|| tmp[2] != 'k') { file.close(); return(2); }
//read (and skip) the rest of the header line
file.ignore(10240,'\n');
//ignore "vtk output"
file.ignore(10240,'\n');
//read "ASCII"
file >> tmp;
if (tmp[0] != 'A'
|| tmp[1] != 'S'
|| tmp[2] != 'C'
|| tmp[3] != 'I'
|| tmp[4] != 'I') { file.close(); return(3); }
file.ignore(10240,'\n');
//ignore "DATASET UNSTRUCTURED GRID"
file.ignore(10240,'\n');
//read points header
int itemCount;
file >> tmp >> itemCount;;
if (tmp[0] != 'P'
|| tmp[1] != 'O'
|| tmp[2] != 'I'
|| tmp[3] != 'N'
|| tmp[4] != 'T'
|| tmp[5] != 'S') { file.close(); return(4); }
file.ignore(10240,'\n');
std::cout << "reading " << itemCount << " point coordinates\n";
Pos.reserve(itemCount);
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
//read all points...
float x,y,z;
while (itemCount > 0 && file >> x)
{
file >> y >> z;
//... and save them
Vector3FC v1(x,y,z);
v1*=100.f;
Pos.push_back(v1);
--itemCount;
}
std::cout << "last coordinate was: " << x << "," << y << "," << z << "\n";
//prepare "information about faces normals"
Vector3F fictiveNormal(1.f,0.f,0.f);
//read polyhedra header
file >> tmp >> itemCount;
if (tmp[0] != 'C'
|| tmp[1] != 'E'
|| tmp[2] != 'L'
|| tmp[3] != 'L'
|| tmp[4] != 'S') { file.close(); return(5); }
file.ignore(10240,'\n');
std::cout << "reading " << itemCount << " polyhedra\n";
ID.reserve(3*itemCount);
norm.reserve(itemCount);
//read all polyhedra vertices
int ignore,v1,v2,v3,v4;
while (itemCount > 0 && file >> ignore && ignore == 4)
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
{
file >> v1 >> v2 >> v3 >> v4;
//save v1,v2,v3 (TODO: if not already saved...)
ID.push_back(v1);
ID.push_back(v2);
ID.push_back(v3);
norm.push_back(fictiveNormal);
//save v1,v2,v4 (TODO: if not already saved...)
ID.push_back(v1);
ID.push_back(v2);
ID.push_back(v4);
norm.push_back(fictiveNormal);
//save v1,v4,v3 (TODO: if not already saved...)
ID.push_back(v1);
ID.push_back(v4);
ID.push_back(v3);
norm.push_back(fictiveNormal);
//save v4,v2,v3 (TODO: if not already saved...)
ID.push_back(v4);
ID.push_back(v2);
ID.push_back(v3);
norm.push_back(fictiveNormal);
--itemCount;
}
std::cout << "last polyhedron was: " << v1 << "," << v2 << "," << v3 << "," << v4 << "\n";
file.close();
return(0);
}
int ActiveMesh::ImportVTK_Ftree(const char *filename,bool resetMesh)
{
const int PointsOnRadiusPeriphery=10;
const float radiusCorrection=0.1f;
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
if (resetMesh)
{
Pos.clear();
ID.clear();
norm.clear();
}
//local/temporary list of vertices of segments that make up the f-tree
//later, we convert these to triangles and save these guys instead
fPoints.clear();
segFromPoint.clear();
segToPoint.clear();
segFromRadius.clear();
//try to open the file
std::ifstream file(filename);
if (!file.is_open()) return 1;
//read the "header" line
char tmp[1024];
file >> tmp >> tmp; //dangerous...
//check tmp for "vtk" or complain
if (tmp[0] != 'v'
|| tmp[1] != 't'
|| tmp[2] != 'k') { file.close(); return(2); }
//read (and skip) the rest of the header line
file.ignore(10240,'\n');
//ignore "vtk output"
file.ignore(10240,'\n');
//read "ASCII"
file >> tmp;
if (tmp[0] != 'A'
|| tmp[1] != 'S'
|| tmp[2] != 'C'
|| tmp[3] != 'I'
|| tmp[4] != 'I') { file.close(); return(3); }
file.ignore(10240,'\n');
//ignore "DATASET UNSTRUCTURED GRID"
file.ignore(10240,'\n');
//read points header
int itemCount;
file >> tmp >> itemCount;;
if (tmp[0] != 'P'
|| tmp[1] != 'O'
|| tmp[2] != 'I'
|| tmp[3] != 'N'
|| tmp[4] != 'T'
|| tmp[5] != 'S') { file.close(); return(4); }
file.ignore(10240,'\n');
std::cout << "reading " << itemCount << " point coordinates\n";
fPoints.reserve(itemCount);
//read all points...
float x,y,z;
while (itemCount > 0 && file >> x)
{
file >> y >> z;
//... and save them
Vector3FC v1(x,y,z);
v1*=100.f;
fPoints.push_back(v1);
--itemCount;
}
std::cout << "last coordinate was: " << x << "," << y << "," << z << "\n";
//read segments header
file >> tmp >> itemCount;
if (tmp[0] != 'C'
|| tmp[1] != 'E'
|| tmp[2] != 'L'
|| tmp[3] != 'L'
|| tmp[4] != 'S') { file.close(); return(5); }
file.ignore(10240,'\n');
std::cout << "reading " << itemCount << " segments\n";
segFromPoint.reserve(itemCount);
segToPoint.reserve(itemCount);
segFromRadius.reserve(itemCount);
//read all segments vertices
int ignore,v1,v2;
while (itemCount > 0 && file >> ignore && ignore == 2)
{
file >> v1 >> v2;
segFromPoint.push_back(v1);
segToPoint.push_back(v2);
--itemCount;
}
std::cout << "last segment was: " << v1 << "," << v2 << "\n";
//"ignore" cell types header, body
file >> tmp >> itemCount;
if (tmp[0] != 'C'
|| tmp[1] != 'E'
|| tmp[2] != 'L'
|| tmp[3] != 'L'
|| tmp[4] != '_'
|| tmp[5] != 'T'
|| tmp[6] != 'Y') { file.close(); return(6); }
file.ignore(10240,'\n');
while (itemCount > 0)
{
file.ignore(10240,'\n');
--itemCount;
}
//read radii, i.e. CELL_DATA header
file >> tmp >> itemCount;
if (tmp[0] != 'C'
|| tmp[1] != 'E'
|| tmp[2] != 'L'
|| tmp[3] != 'L'
|| tmp[4] != '_'
|| tmp[5] != 'D'
|| tmp[6] != 'A') { file.close(); return(7); }
file.ignore(10240,'\n');
file.ignore(10240,'\n'); //ignore SCALARS..
file.ignore(10240,'\n'); //ignore LOOKUP_TABLE
//read the radii
v1=0;
while (itemCount > 0 && file >> x)
{
segFromRadius.push_back(x*radiusCorrection);
--itemCount;
++v1;
}
file.close();
//now widen segments and save triangles...
//prepare "information about faces normals"
Vector3F fictiveNormal(1.f,0.f,0.f);
size_t firstRadiusPoint=Pos.size();
PointsFirstOffset=firstRadiusPoint;
//for all bending points except the last one (tip)
for (unsigned int i=0; i < segFromPoint.size(); ++i)
{
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
//we need to construct rotation matrix that would
//rotate points on a circle which lays in the XZ plane
//(Y axis is normal to it then) such that the points
//would lay in the plane to which this new Y axis
//would be normal
//
//new Y axis
Vector3F nYaxis=fPoints[segToPoint[i]];
if (i == 0) nYaxis-=fPoints[segFromPoint[i]];
else
{
nYaxis-=fPoints[segFromPoint[i-1]];
nYaxis/=2.f; //unnecessary scaling
}
Vector3F nZaxis(0.f,1.f,0.f); //in fact it is original Yaxis _for now_
Vector3F nXaxis;
//new X axis is perpendicular to the original and new Y axis
Mul(nYaxis,nZaxis,nXaxis);
//new Z axis is perpendicular to the new X and Y axes
Mul(nYaxis,nXaxis,nZaxis);
//normalize...
nXaxis/=nXaxis.Len();
nZaxis/=nZaxis.Len();
//now render the points on the circle and project them into the scene
for (int p=0; p < PointsOnRadiusPeriphery; ++p)
{
//the point in its original position
float x=segFromRadius[i]*cosf(6.28f*float(p)/float(PointsOnRadiusPeriphery));
float z=segFromRadius[i]*sinf(6.28f*float(p)/float(PointsOnRadiusPeriphery));
//rotate
Vector3FC V(x*nXaxis);
V+=z*nZaxis;
//shift to the centre and save
V+=fPoints[segFromPoint[i]];
Pos.push_back(V);
}
}
//finally, add the tip point
Pos.push_back(fPoints[segToPoint.back()]);
//now create triangles for all segment strips
//except the last one (that leads to the tip)
for (unsigned int i=1; i < segFromPoint.size(); ++i)
{
int p=0;
for (; p < PointsOnRadiusPeriphery-1; ++p)
{
ID.push_back(firstRadiusPoint+p);
ID.push_back(firstRadiusPoint+p+1);
ID.push_back(firstRadiusPoint+p+PointsOnRadiusPeriphery);
norm.push_back(fictiveNormal);
ID.push_back(firstRadiusPoint+p+PointsOnRadiusPeriphery+1);
ID.push_back(firstRadiusPoint+p+PointsOnRadiusPeriphery);
ID.push_back(firstRadiusPoint+p+1);
norm.push_back(fictiveNormal);
}
ID.push_back(firstRadiusPoint+p);
ID.push_back(firstRadiusPoint);
ID.push_back(firstRadiusPoint+p+PointsOnRadiusPeriphery);
norm.push_back(fictiveNormal);
ID.push_back(firstRadiusPoint +PointsOnRadiusPeriphery);
ID.push_back(firstRadiusPoint+p+PointsOnRadiusPeriphery);
ID.push_back(firstRadiusPoint);
norm.push_back(fictiveNormal);
firstRadiusPoint+=PointsOnRadiusPeriphery;
}
//the last segment...
int p=0;
for (; p < PointsOnRadiusPeriphery-1; ++p)
{
ID.push_back(firstRadiusPoint+p);
ID.push_back(firstRadiusPoint+p+1);
ID.push_back(firstRadiusPoint+PointsOnRadiusPeriphery);
norm.push_back(fictiveNormal);
}
ID.push_back(firstRadiusPoint+p);
ID.push_back(firstRadiusPoint);
ID.push_back(firstRadiusPoint+PointsOnRadiusPeriphery);
norm.push_back(fictiveNormal);
void ActiveMesh::RenderMask(i3d::Image3d<i3d::GRAY16>& mask,const bool showTriangles)
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
{
//time savers: resolution
const float xRes=mask.GetResolution().GetX();
const float yRes=mask.GetResolution().GetY();
const float zRes=mask.GetResolution().GetZ();
//time savers: offset
const float xOff=mask.GetOffset().x;
const float yOff=mask.GetOffset().y;
const float zOff=mask.GetOffset().z;
//over all triangles
for (unsigned int i=0; i < ID.size()/3; ++i)
//for (unsigned int i=0; i < 15; ++i)
{
const Vector3F& v1=Pos[ID[3*i+0]];
const Vector3F& v2=Pos[ID[3*i+1]];
const Vector3F& v3=Pos[ID[3*i+2]];
//sweeping (and rendering) the triangle
for (float c=0.f; c <= 1.0f; c += 0.1f)
for (float b=0.f; b <= (1.0f-c); b += 0.1f)
{
float a=1.0f -b -c;
Vector3F v=a*v1;
v+=b*v2;
v+=c*v3;
//std::cout << "ID #" << i << ": v=(" << v.x << "," << v.y << "," << v.z << ")\n";
//nearest neighbor pixel coordinate
const int x=(int)roundf( (v.x-xOff) *xRes);
const int y=(int)roundf( (v.y-yOff) *yRes);
const int z=(int)roundf( (v.z-zOff) *zRes);
short val=(showTriangles)? short(i%5 *30 +100) : 100;
if (mask.Include(x,y,z)) mask.SetVoxel(x,y,z,val);
}
}
//this floods cell exterior from the image corner
i3d::Image3d<i3d::GRAY16> tmpMask(mask);
i3d::Dilation(tmpMask,mask,i3d::nb3D_o18);
i3d::FloodFill(mask,(i3d::GRAY16)50,0);
//this removes the flooding while filling
//everything else (and closing holes in this was)
i3d::GRAY16* p=mask.GetFirstVoxelAddr();
i3d::GRAY16* const pL=p+mask.GetImageSize();
while (p != pL)
{
*p=(*p != 50)? std::max(*p,i3d::GRAY16(100)) : 0;
++p;
}
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
}
void ActiveMesh::RenderMaskB(i3d::Image3d<i3d::GRAY16>& mask)
{
//time savers: resolution
const float xRes=mask.GetResolution().GetX();
const float yRes=mask.GetResolution().GetY();
const float zRes=mask.GetResolution().GetZ();
//time savers: offset
const float xOff=mask.GetOffset().x;
const float yOff=mask.GetOffset().y;
const float zOff=mask.GetOffset().z;
//over all triangles
//for (unsigned int i=0; i < ID.size()/3; ++i)
for (unsigned int i=0; i < 15; ++i)
{
const Vector3F& v1=Pos[ID[3*i+0]];
const Vector3F& v2=Pos[ID[3*i+1]];
const Vector3F& v3=Pos[ID[3*i+2]];
//Vector3F e12=v2-v1; //ID=0
//Vector3F e13=v3-v1; //ID=1
//Vector3F e23=v3-v2; //ID=2
Vector3F edges[3]={v2-v1,v3-v1,v3-v2};
short order[3]={0,1,2};
if (edges[1].LenQ() < edges[0].LenQ()) { order[0]=1; order[1]=0; }
if (edges[2].LenQ() < edges[order[1]].LenQ())
{
order[2]=order[1];
order[1]=2;
if (edges[2].LenQ() < edges[order[0]].LenQ())
{
order[1]=order[0];
order[0]=2;
}
}
//point within a triangle will of the form: vv + b*vb + c*vc
//vb is the shortest edge, vc is the longest edge
//vv is their common vertex
//vb,vc are oriented outward from this vertex
Vector3F vv,vb,vc;
if (order[0]==0 && order[2]==1)
{
//order[0] "points" at shortest edge
vv=v1;
vb=edges[0];
vc=edges[1];
}
else
if (order[0]==0 && order[2]==2)
{
vv=v2;
vb=-edges[0];
vc=edges[2];
}
else
if (order[0]==1 && order[2]==0)
{
vv=v1;
vb=edges[1];
vc=edges[0];
}
else
if (order[0]==1 && order[2]==2)
{
vv=v3;
vb=-edges[1];
vc=-edges[2];
}
else
if (order[0]==2 && order[2]==0)
{
vv=v2;
vb=edges[2];
vc=-edges[0];
}
else
if (order[0]==2 && order[2]==1)
{
vv=v3;
vb=-edges[2];
vc=-edges[1];
}
//optimal increment for the short and long edge, respectively
float db=(vb.x*xRes > vb.y*yRes)? vb.x*xRes : vb.y*yRes;
db=(vb.z*zRes > db)? vb.z*zRes : db;
db=1.f/db;
float dc=(vc.x*xRes > vc.y*yRes)? vc.x*xRes : vc.y*yRes;
dc=(vc.z*zRes > dc)? vc.z*zRes : dc;
dc=1.f/dc;
std::cout << "\nID #" << i << ": v1=(" << v1.x << "," << v1.y << "," << v1.z << ")\n";
std::cout << "ID #" << i << ": v2=(" << v2.x << "," << v2.y << "," << v2.z << ")\n";
std::cout << "ID #" << i << ": v3=(" << v3.x << "," << v3.y << "," << v3.z << ")\n";
//sweeping (and rendering) the triangle
for (float c=0.f; c <= 1.0f; c += dc)
for (float b=0.f; b <= (1.0f-c); b += db)
{
Vector3F v=vv;
v+=b*vb;
v+=c*vc;
std::cout << "ID #" << i << ": v=(" << v.x << "," << v.y << "," << v.z << ")\n";
//nearest neighbor pixel coordinate
const int x=(int)roundf( (v.x-xOff) *xRes);
const int y=(int)roundf( (v.y-yOff) *yRes);
const int z=(int)roundf( (v.z-zOff) *zRes);
if (mask.Include(x,y,z)) mask.SetVoxel(x,y,z,short(i));
}
}
}
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
void ActiveMesh::RenderOneTimeTexture(const i3d::Image3d<i3d::GRAY16>& mask,
i3d::Image3d<i3d::GRAY16>& texture)
{
i3d::Image3d<float> dt;
i3d::GrayToFloat(mask,dt);
i3d::EDM(dt,0,100.f,false);
dt.SaveImage("dt.ics");
float* p=dt.GetFirstVoxelAddr();
float* const pL=p+dt.GetImageSize();
int randomCounter=20;
while (p != pL)
{
//are we on a surface shell?
if (*p < 0.10f)
{
//invert the intensity levels (iso-lines)
if (*p > 0.f) *p=(0.12f-*p)*100.f;
//introduce random bumbs?
if (randomCounter==0)
{
*p *= 2.f;
randomCounter=30; //something random here...
}
--randomCounter;
}
else *p=0.f; //else clear the pixel value
++p;
}
dt.SaveImage("dt2.ics");
i3d::GaussIIR(dt,3.f,3.f,9.f);
p=dt.GetFirstVoxelAddr();
for (; p != pL; ++p)
{
//uncertainty in the number of incoming photons
float noiseMean = sqrt(*p), // from statistics: shot noise = sqrt(signal)
noiseVar = noiseMean; // for Poisson distribution E(X) = D(X)
*p=ceilf(*p + GetRandomPoisson(noiseMean) - noiseVar);
//constants are parameters of Andor iXon camera provided from vendor:
//photon shot noise: dark current
*p+=GetRandomPoisson(0.06f);
//read-out noise:
// variance up to 25.f (old camera on ILBIT)
// variance about 1.f (for the new camera on ILBIT)
//*p+=GetRandomGauss(700.f,90.f);
}
i3d::FloatToGrayNoWeight(dt,texture);
}
void ActiveMesh::CenterMesh(const Vector3F& newCentre)
{
//calc geom. centre
double x=0.,y=0.,z=0.;
for (unsigned int i=0; i < Pos.size(); ++i)
{
x+=Pos[i].x;
y+=Pos[i].y;
z+=Pos[i].z;
}
x/=double(Pos.size());
y/=double(Pos.size());
z/=double(Pos.size());
x-=newCentre.x;
y-=newCentre.y;
z-=newCentre.z;
//shift the centre to point (0,0,0)
for (unsigned int i=0; i < Pos.size(); ++i)
{
Pos[i].x-=float(x);
Pos[i].y-=float(y);
Pos[i].z-=float(z);
}
for (unsigned int i=0; i < fPoints.size(); ++i)
{
fPoints[i].x-=float(x);
fPoints[i].y-=float(y);
fPoints[i].z-=float(z);
}
}
void ActiveMesh::ScaleMesh(const Vector3F& scale)
{
for (unsigned int i=0; i < Pos.size(); ++i)
{
Pos[i].x*=scale.x;
Pos[i].y*=scale.y;
Pos[i].z*=scale.z;
}
}
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// ============== surface fitting ==============
int ActiveMesh::CalcQuadricSurface_Taubin(const int vertexID,
float (&coeffs)[10])
{
//determine some reasonable number of nearest neighbors
std::vector< std::vector<size_t> > neigsLeveled;
ulm::getVertexNeighbours(*this,vertexID,2,neigsLeveled);
//make it flat...
std::vector<size_t> neigs;
for (unsigned int l=0; l < neigsLeveled.size(); ++l)
for (unsigned int i=0; i < neigsLeveled[l].size(); ++i)
neigs.push_back(neigsLeveled[l][i]);
neigsLeveled.clear();
//V be the vector of [x,y,z] combinations, a counterpart to coeffs
float V[10],V1[10],V2[10],V3[10];
//M be the matrix holding initially sum of (square matrices) V*V'
//N is similar, just a sum of three different Vs is used
float M[100],N[100];
for (int i=0; i < 100; ++i) M[i]=N[i]=0.f;
//over all neighbors (including the centre vertex itself),
//
//this order garuantees that array V will be relevant for input
//vertexID after the cycles are over -- will become handy later
for (signed int n=(int)neigs.size()-1; n >= 0; --n)
{
//shortcut to the current point
const Vector3FC& v=Pos[neigs[n]];
//get Vs for the given point 'v'
V[0]=1.f; V1[0]=0.f; V2[0]=0.f; V3[0]=0.f;
V[1]=v.x; V1[1]=1.f; V2[1]=0.f; V3[1]=0.f;
V[2]=v.y; V1[2]=0.f; V2[2]=1.f; V3[2]=0.f;