Newer
Older
# ============================================================================================= #
# Author: Pavel Iakubovskii, ZFTurbo, ashawkey, Dominik Müller, #
# Samuel Šuľan, Lucia Hradecká, Filip Lux #
# Copyright: albumentations: : https://github.com/albumentations-team #
# Pavel Iakubovskii : https://github.com/qubvel #
# ZFTurbo : https://github.com/ZFTurbo #
# ashawkey : https://github.com/ashawkey #
# Dominik Müller : https://github.com/muellerdo #
# Lucia Hradecká : lucia.d.hradecka@gmail.com #
# Filip Lux : lux.filip@gmail.com #
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# #
# Volumentations History: #
# - Original: https://github.com/albumentations-team/albumentations #
# - 3D Conversion: https://github.com/ashawkey/volumentations #
# - Continued Development: https://github.com/ZFTurbo/volumentations #
# - Enhancements: https://github.com/qubvel/volumentations #
# - Further Enhancements: https://github.com/muellerdo/volumentations #
# - Biomedical Enhancements: https://gitlab.fi.muni.cz/cbia/bio-volumentations #
# #
# MIT License. #
# #
# Permission is hereby granted, free of charge, to any person obtaining a copy #
# of this software and associated documentation files (the "Software"), to deal #
# in the Software without restriction, including without limitation the rights #
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #
# copies of the Software, and to permit persons to whom the Software is #
# furnished to do so, subject to the following conditions: #
# #
# The above copyright notice and this permission notice shall be included in all #
# copies or substantial portions of the Software. #
# #
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #
# SOFTWARE. #
# ============================================================================================= #
import random
import numpy as np
from ..core.transforms_interface import DualTransform, ImageOnlyTransform
from ..augmentations import functional as F
from ..augmentations.spatial_funcional import get_affine_transform, parse_itk_interpolation
from ..random_utils import uniform, sample_range_uniform
from typing import List, Sequence, Tuple, Union
from .utils import parse_limits, parse_coefs, parse_pads, to_tuple, validate_bbox, get_spatio_temporal_domain_limit,\
to_spatio_temporal
# TODO anti_aliasing_downsample keep parameter or remove?
class Resize(DualTransform):
"""Resize input to the given shape.
Internally, the ``skimage.transform.resize`` function is used.
The ``interpolation``, ``border_mode``, ``ival``, ``mval``,
and ``anti_aliasing_downsample`` arguments are forwarded to it. More details at:
https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.resize.
Args:
shape (tuple of ints): The desired image shape.
The unspecified dimensions (C and T) are not affected.
interpolation (int, optional): Order of spline interpolation.
Defaults to ``1``.
border_mode (str, optional): Values outside image domain are filled according to this mode.
Defaults to ``'reflect'``.
ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.
Defaults to ``0``.
mval (float, optional): Value of `mask` and `float_mask` voxels outside of the domain. Only applied when ``border_mode = 'constant'``.
Defaults to ``0``.
anti_aliasing_downsample (bool, optional): Controls if the Gaussian filter should be applied before
downsampling. Recommended.
Defaults to ``True``.
ignore_index (float | None, optional): If a float, then transformation of `mask` is done with
``border_mode = 'constant'`` and ``mval = ignore_index``.
If ``None``, this argument is ignored.
Defaults to ``None``.
always_apply (bool, optional): Always apply this transformation in composition.
Defaults to ``False``.
p (float, optional): Chance of applying this transformation in composition.
Defaults to ``1``.
Targets:
image, mask, float mask, key points, bounding boxes
def __init__(self, shape: TypeSpatialShape, interpolation: int = 1, border_mode: str = 'reflect', ival: float = 0,
mval: float = 0, anti_aliasing_downsample: bool = True, ignore_index: Union[float, None] = None,
always_apply: bool = False, p: float = 1):
super().__init__(always_apply, p)
self.shape: TypeSpatioTemporalCoordinate = to_spatio_temporal(shape)
self.interpolation = interpolation
self.border_mode = border_mode
self.mask_mode = border_mode
self.ival = ival
self.mval = mval
self.anti_aliasing_downsample = anti_aliasing_downsample
if not (ignore_index is None):
self.mask_mode = "constant"
self.mval = ignore_index
def apply(self, img, **params):
return F.resize(img, input_new_shape=self.shape, interpolation=self.interpolation,
border_mode=self.border_mode, cval=self.ival,
anti_aliasing_downsample=self.anti_aliasing_downsample)
def apply_to_mask(self, mask, **params):
return F.resize(mask, input_new_shape=self.shape, interpolation=0,
border_mode=self.mask_mode, cval=self.mval, anti_aliasing_downsample=False,
mask=True)
def apply_to_float_mask(self, mask, **params):
return F.resize(mask, input_new_shape=self.shape, interpolation=self.interpolation,
border_mode=self.mask_mode, cval=self.mval, anti_aliasing_downsample=False,
mask=True)
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def apply_to_keypoints(self, keypoints, **params):
return F.resize_keypoints(keypoints,
domain_limit=params['domain_limit'],
new_shape=self.shape)
"""
def apply_to_bboxes(self, bboxes, **params):
for bbox in bboxes:
new_bbox = F.resize_keypoints(bbox,
input_new_shape=self.shape,
original_shape=params['original_shape'],
keep_all=True)
if validate_bbox(bbox, new_bbox, min_overlay_ratio):
res.append(new_bbox)
return res
"""
def get_params(self, **data):
# read shape of the original image
domain_limit: TypeSpatioTemporalCoordinate = get_spatio_temporal_domain_limit(data)
return {
"domain_limit": domain_limit,
}
def __repr__(self):
return f'Resize({self.shape}, {self.interpolation}, {self.border_mode} , {self.ival}, {self.mval},' \
f'{self.anti_aliasing_downsample}, {self.always_apply}, {self.p})'
class Scale(DualTransform):
"""Rescale input by the given scale.
Args:
scales (float|List[float], optional): Value by which the input should be scaled.
Must be either of: ``S``, ``[S_Z, S_Y, S_X]``.
If a float, then all spatial dimensions are scaled by it (equivalent to ``[S, S, S]``).
The unspecified dimensions (C and T) are not affected.
interpolation (str, optional): SimpleITK interpolation type for `image` and `float_mask`.
Must be one of ``linear``, ``nearest``, ``bspline``, ``gaussian``.
For `mask`, the ``nearest`` interpolation is always used.
spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.
Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.
If ``None``, equivalent to ``(1, 1, 1)``.
If a float ``S``, equivalent to ``(S, S, S)``.
Otherwise, a scale for each spatial dimension must be given.
Defaults to ``None``.
border_mode (str, optional): Values outside image domain are filled according to this mode.
Defaults to ``'constant'``.
ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.
Defaults to ``0``.
mval (float, optional): Value of `mask` and `float_mask` voxels outside of the domain. Only applied when ``border_mode = 'constant'``.
Defaults to ``0``.
ignore_index (float | None, optional): If a float, then transformation of `mask` is done with
``border_mode = 'constant'`` and ``mval = ignore_index``.
If ``None``, this argument is ignored.
Defaults to ``None``.
always_apply (bool, optional): Always apply this transformation in composition.
Defaults to ``False``.
p (float, optional): Chance of applying this transformation in composition.
Defaults to ``1``.
Targets:
image, mask, float mask, key points, bounding boxes
"""
def __init__(self, scales: Union[float, TypeTripletFloat] = 1,
interpolation: str = 'linear', spacing: Union[float, TypeTripletFloat] = None,
border_mode: str = 'constant', ival: float = 0, mval: float = 0,
ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 1):
super().__init__(always_apply, p)
self.scale = parse_coefs(scales, identity_element=1.)
self.interpolation: str = parse_itk_interpolation(interpolation)
self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1.)
self.border_mode = border_mode # not implemented
self.mask_mode = border_mode # not implemented
self.ival = ival
self.mval = mval
if not (ignore_index is None):
self.mask_mode = "constant"
self.mval = ignore_index
def apply(self, img, **params):
return F.affine(img,
scales=self.scale,
interpolation=self.interpolation,
border_mode=self.border_mode,
value=self.ival,
spacing=self.spacing)
def apply_to_mask(self, mask, **params):
interpolation = parse_itk_interpolation('nearest') # refers to 'sitkNearestNeighbor'
scales=self.scale,
interpolation=interpolation,
border_mode=self.mask_mode,
value=self.mval,
scales=self.scale,
interpolation=self.interpolation,
border_mode=self.mask_mode,
value=self.mval,
def apply_to_keypoints(self, keypoints, **params):
return F.affine_keypoints(keypoints,
scales=self.scale,
spacing = self.spacing,
domain_limit=params['domain_limit'])
"""
def apply_to_bboxes(self, bboxes, **params):
for bbox in bboxes:
new_bbox = F.affine_keypoints(bbox,
scales=self.scale,
domain_limit=params['domain_limit'],
spacing = self.spacing,
keep_all=True)
if validate_bbox(bbox, new_bbox):
res.append(new_bbox)
return res
"""
def get_params(self, **data):
domain_limit: TypeSpatioTemporalCoordinate = get_spatio_temporal_domain_limit(data)
return {'domain_limit': domain_limit}
def __repr__(self):
return f'Scale({self.scale}, {self.interpolation}, {self.border_mode}, {self.ival}, {self.mval},' \
f'{self.always_apply}, {self.p})'
class RandomScale(DualTransform):
"""Randomly rescale input.
Args:
scaling_limit (float | Tuple[float], optional): Limits of scaling factors.
Must be either of: ``S``, ``(S1, S2)``, ``(S_Z, S_Y, S_X)``, or ``(S_Z1, S_Z2, S_Y1, S_Y2, S_X1, S_X2)``.
If a float ``S``, then all spatial dimensions are scaled by a random number drawn uniformly from
the interval [2-S, S] (equivalent to inputting ``(2-S, S, 2-S, S, 2-S, S)``).
If a tuple of 2 floats, then all spatial dimensions are scaled by a random number drawn uniformly
from the interval [S1, S2] (equivalent to inputting ``(S1, S2, S1, S2, S1, S2)``).
If a tuple of 3 floats, then an interval [-S_a, S_a] is constructed for each spatial
(equivalent to inputting ``(2-S_Z, S_Z, 2-S_Y, S_Y, 2-S_X, S_X)``).
If a tuple of 6 floats, the scales for individual spatial dimensions are randomly drawn from the
respective intervals [S_Z1, S_Z2], [S_Y1, S_Y2], [S_X1, S_X2].
The unspecified dimensions (C and T) are not affected.
Defaults to ``(0.9, 1.1)``.
interpolation (str, optional): SimpleITK interpolation type for `image` and `float_mask`.
Must be one of ``linear``, ``nearest``, ``bspline``, ``gaussian``.
For `mask`, the ``nearest`` interpolation is always used.
spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.
Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.
If ``None``, equivalent to ``(1, 1, 1)``.
If a float ``S``, equivalent to ``(S, S, S)``.
Otherwise, a scale for each spatial dimension must be given.
Defaults to ``None``.
border_mode (str, optional): Values outside image domain are filled according to the mode.
Defaults to ``'constant'``.
ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.
Defaults to ``0``.
mval (float, optional): Value of `mask` and `float_mask` voxels outside of the domain. Only applied when ``border_mode = 'constant'``.
Defaults to ``0``.
ignore_index (float | None, optional): If a float, then transformation of `mask` is done with
``border_mode = 'constant'`` and ``mval = ignore_index``.
If ``None``, this argument is ignored.
Defaults to ``None``.
always_apply (bool, optional): Always apply this transformation in composition.
Defaults to ``False``.
p (float, optional): Chance of applying this transformation in composition.
Defaults to ``0.5``.
Targets:
image, mask, float mask, key points, bounding boxes
"""
def __init__(self, scaling_limit: Union[float, TypePairFloat, TypeTripletFloat, TypeSextetFloat] = (0.9, 1.1),
interpolation: str = 'linear', spacing: Union[float, TypeTripletFloat] = None,
border_mode: str = 'constant', ival: float = 0, mval: float = 0,
ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 0.5):
super().__init__(always_apply, p)
self.scaling_limit: TypeSextetFloat = parse_limits(scaling_limit, identity_element=1)
self.interpolation: str = parse_itk_interpolation(interpolation)
self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1.)
self.border_mode = border_mode
self.mask_mode = border_mode
self.ival: float = ival
self.mval: float = mval
if not (ignore_index is None):
self.mask_mode = "constant"
self.mval = ignore_index
def get_params(self, **data):
# set parameters of the transform
domain_limit: TypeSpatioTemporalCoordinate = get_spatio_temporal_domain_limit(data)
scale = sample_range_uniform(self.scaling_limit)
return {
"scale": scale,
}
def apply(self, img, **params):
return F.affine(img,
scales=params["scale"],
interpolation=self.interpolation,
border_mode=self.border_mode,
value=self.ival,
spacing=self.spacing)
def apply_to_mask(self, mask, **params):
interpolation = parse_itk_interpolation('nearest') # refers to 'sitkNearestNeighbor'
scales=params["scale"],
interpolation=interpolation,
border_mode=self.mask_mode,
value=self.mval,
scales=params["scale"],
interpolation=self.interpolation,
border_mode=self.mask_mode,
value=self.mval,
def apply_to_keypoints(self, keypoints, **params):
return F.affine_keypoints(keypoints,
scales=params["scale"],
spacing=self.spacing,
domain_limit=params['domain_limit'])
def __repr__(self):
return f'RandomScale({self.scaling_limit}, {self.interpolation}, {self.always_apply}, {self.p})'
class RandomRotate90(DualTransform):
"""Rotation of input by 0, 90, 180, or 270 degrees around the specified spatial axes.
Args:
axes (List[int], optional): List of axes around which the input is rotated. Recognised axis symbols are
``1`` for Z, ``2`` for Y, and ``3`` for X. A single axis can occur multiple times in the list.
If ``shuffle_axis = False``, the order of axes determines the order of transformations.
If ``None``, will be rotated around all spatial axes.
shuffle_axis (bool, optional): If set to ``True``, the order of rotations is random.
Defaults to ``False``.
factor (int, optional): Number of times the array is rotated by 90 degrees. If ``None``, will be chosen randomly.
Defaults to ``None``.
always_apply (bool, optional): Always apply this transformation in composition.
Defaults to ``False``.
p (float, optional): Chance of applying this transformation in composition.
Defaults to ``0.5``.
Targets:
image, mask, float mask, key points, bounding boxes
def __init__(self, axes: List[int] = None, shuffle_axis: bool = False, factor=None,
always_apply: bool = False, p: float = 0.5):
super().__init__(always_apply, p)
self.axes = axes
self.shuffle_axis = shuffle_axis
def apply(self, img, **params):
for factor, axes in zip(params["factor"], params["rotation_around"]):
img = np.rot90(img, factor, axes=axes)
return img
def apply_to_mask(self, mask, **params):
for rot, factor in zip(params["rotation_around"], params["factor"]):
mask = np.rot90(mask, factor, axes=(rot[0] - 1, rot[1] - 1))
def apply_to_keypoints(self, keypoints, **params):
for rot, factor in zip(params["rotation_around"], params["factor"]):
keypoints = F.rot90_keypoints(keypoints,
factor=factor,
def get_params(self, **data):
# Rotate by all axis by default
if self.axes is None:
self.axes = [1, 2, 3]
# Create all combinations for rotating
axes_to_rotate = {1: (2, 3), 2: (1, 3), 3: (1, 2)}
rotation_around = []
for i in self.axes:
if i in axes_to_rotate.keys():
rotation_around.append(axes_to_rotate[i])
# shuffle order of axis
if self.shuffle_axis:
random.shuffle(rotation_around)
# choose angle to rotate
if self.factor is None:
factor = [random.randint(0, 3) for _ in range(len(rotation_around))]
else:
factor = [self.factor]
rotation_around = [(1, 2)]
print('ROT90', factor, rotation_around)
"rotation_around": rotation_around,
"img_shape": img_shape}
def __repr__(self):
return f'RandomRotate90({self.axes}, {self.always_apply}, {self.p})'
class Flip(DualTransform):
"""Flip input around the specified spatial axes.
Args:
axes (List[int], optional): List of axes around which is flip done. Recognised axis symbols are
``1`` for Z, ``2`` for Y, and ``3`` for X. If ``None``, will be flipped around all spatial axes.
always_apply (bool, optional): Always apply this transformation in composition.
Defaults to ``False``.
p (float, optional): Chance of applying this transformation in composition.
Defaults to ``1``.
Targets:
image, mask, float mask, key points, bounding boxes
"""
def __init__(self, axes: List[int] = None, always_apply=False, p=1):
super().__init__(always_apply, p)
self.axes = axes
def apply(self, img, **params):
return np.flip(img, params["axes"])
def apply_to_mask(self, mask, **params):
# Mask has no dimension channel
return np.flip(mask, axis=[item - 1 for item in params["axes"]])
def apply_to_keypoints(self, keypoints, **params):
return F.flip_keypoints(keypoints,
axes=params['axes'],
img_shape=params['img_shape'])
axes = [1, 2, 3] if self.axes is None else self.axes
img_shape = np.array(data['image'].shape[1:4])
return {"axes": axes,
"img_shape": img_shape}
def __repr__(self):
return f'Flip({self.axes}, {self.always_apply}, {self.p})'
class RandomFlip(DualTransform):
"""Flip input around a set of axes randomly chosen from the input list of axis combinations.
Args:
axes_to_choose (List[Tuple[int]] or None, optional): List of axis indices from which one option
is randomly chosen. Recognised axis symbols are ``1`` for Z, ``2`` for Y, and ``3`` for X.
The image will be flipped around all axes in the chosen combination.
If ``None``, a random subset of spatial axes is chosen, corresponding to inputting
``[(,), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]``.
Defaults to ``None``.
always_apply (bool, optional): Always apply this transformation in composition.
Defaults to ``False``.
p (float, optional): Chance of applying this transformation in composition.
Defaults to ``0.5``.
Targets:
image, mask, float mask, key points, bounding boxes
"""
def __init__(self, axes_to_choose: Union[None, List[Tuple[int]]] = None, always_apply=False, p=0.5):
super().__init__(always_apply, p)
# TODO: check if input value `axes_to_choose` valid
self.axes = axes_to_choose
def apply(self, img, **params):
return np.flip(img, params["axes"])
def apply_to_mask(self, mask, **params):
# Mask has no dimension channel
return np.flip(mask, axis=[item - 1 for item in params["axes"]])
def apply_to_keypoints(self, keypoints, keep_all=False, **params):
return F.flip_keypoints(keypoints,
axes=params['axes'],
img_shape=params['img_shape'])
to_choose = [1, 2, 3] if self.axes is None else self.axes
axes = random.sample(to_choose, random.randint(0, len(to_choose)))
img_shape = np.array(data['image'].shape[1:4])
return {"axes": axes,
"img_shape": img_shape}
return f'RandomFlip({self.axes}, {self.always_apply}, {self.p})'
class CenterCrop(DualTransform):
"""Crops the central region of the input of given size.
Unlike ``CenterCrop`` from `Albumentations`, this transform pads the input in dimensions
where the input is smaller than the ``shape`` with ``numpy.pad``. The ``border_mode``, ``ival`` and ``mval``
arguments are forwarded to ``numpy.pad`` if padding is necessary. More details at:
https://numpy.org/doc/stable/reference/generated/numpy.pad.html.
Args:
shape (Tuple[int]): The desired shape of input.
border_mode (str, optional): Values outside image domain are filled according to this mode.
Defaults to ``'reflect'``.
ival (float | Sequence, optional): Values of `image` voxels outside of the `image` domain.
Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.
Defaults to ``(0, 0)``.
mval (float | Sequence, optional): Values of `mask` voxels outside of the `mask` domain.
Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.
Defaults to ``(0, 0)``.
ignore_index (float | None, optional): If a float, then transformation of `mask` is done with
``border_mode = 'constant'`` and ``mval = ignore_index``.
If ``None``, this argument is ignored.
Defaults to ``None``.
always_apply (bool, optional): Always apply this transformation in composition.
Defaults to ``False``.
p (float, optional): Chance of applying this transformation in composition.
Defaults to ``1``.
Targets:
image, mask, float mask, key points, bounding boxes
def __init__(self, shape: TypeSpatialShape, border_mode: str = "reflect", ival: Union[Sequence[float], float] = (0, 0),
mval: Union[Sequence[float], float] = (0, 0), ignore_index: Union[float, None] = None,
always_apply: bool = False, p: float = 1.0):
super().__init__(always_apply, p)
self.output_shape = np.asarray(shape, dtype=np.intc) # TODO: make it len 3
self.border_mode = border_mode
self.mask_mode = border_mode
self.ival = ival
self.mval = mval
if not (ignore_index is None):
self.mask_mode = "constant"
self.mval = ignore_index
def apply(self, img, **params):
return F.crop(img,
crop_shape=self.output_shape,
crop_position=params['crop_position'],
pad_dims=params['pad_dims'],
border_mode=self.mask_mode, cval=self.mval, mask=False)
return F.crop(mask,
crop_shape=self.output_shape,
crop_position=params['crop_position'],
pad_dims=params['pad_dims'],
border_mode=self.mask_mode, cval=self.mval, mask=True)
def apply_to_keypoints(self, keypoints, keep_all=False, **params):
return F.crop_keypoints(keypoints,
crop_shape=self.output_shape,
crop_position=params['crop_position'],
pad_dims=params['pad_dims'],
keep_all=keep_all)
def get_params(self, **data):
# get crop coordinates, position of the corner closest to the image origin
img_spatial_shape = np.array(data['image'].shape[1:4])
position: TypeSpatialCoordinate = (img_spatial_shape - self.output_shape) // 2
position = np.maximum(position, 0).astype(int)
pad_dims = F.get_pad_dims(img_spatial_shape, self.output_shape)
return {'crop_position': position,
'pad_dims': pad_dims}
return f'CenterCrop({self.output_shape}, {self.always_apply}, {self.p})'
class RandomCrop(DualTransform):
"""Randomly crops a region of given size from the input.
Unlike ``RandomCrop`` from `Albumentations`, this transform pads the input in dimensions
where the input is smaller than the ``shape`` with ``numpy.pad``. The ``border_mode``, ``ival`` and ``mval``
arguments are forwarded to ``numpy.pad`` if padding is necessary. More details at:
https://numpy.org/doc/stable/reference/generated/numpy.pad.html.
Args:
shape (Tuple[int]): The desired shape of input.
border_mode (str, optional): Values outside image domain are filled according to this mode.
Defaults to ``'reflect'``.
ival (float | Sequence, optional): Values of `image` voxels outside of the `image` domain.
Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.
Defaults to ``(0, 0)``.
mval (float | Sequence, optional): Values of `mask` voxels outside of the `mask` domain.
Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.
Defaults to ``(0, 0)``.
ignore_index (float | None, optional): If a float, then transformation of `mask` is done with
``border_mode = 'constant'`` and ``mval = ignore_index``.
If ``None``, this argument is ignored.
Defaults to ``None``.
always_apply (bool, optional): Always apply this transformation in composition.
Defaults to ``False``.
p (float, optional): Chance of applying this transformation in composition.
Defaults to ``1``.
Targets:
image, mask, float mask, key points, bounding boxes
def __init__(self, shape: TypeSpatialShape, border_mode: str = "reflect", ival: Union[Sequence[float], float] = (0, 0),
mval: Union[Sequence[float], float] = (0, 0), ignore_index: Union[float, None] = None,
always_apply: bool = False, p: float = 1.0):
super().__init__(always_apply, p)
self.border_mode = border_mode
self.mask_mode = border_mode
self.ival = ival
self.mval = mval
if not (ignore_index is None):
self.mask_mode = "constant"
self.mval = ignore_index
def apply(self, img, **params):
return F.crop(img,
crop_shape=self.output_shape,
crop_position=params['crop_position'],
pad_dims=params['pad_dims'],
border_mode=self.mask_mode, cval=self.mval, mask=False)
def apply_to_mask(self, mask, **params):
return F.crop(mask,
crop_shape=self.output_shape,
crop_position=params['crop_position'],
pad_dims=params['pad_dims'],
border_mode=self.mask_mode, cval=self.mval, mask=True)
def apply_to_keypoints(self, keypoints, keep_all=False, **params):
return F.crop_keypoints(keypoints,
crop_shape=self.output_shape,
crop_position=params['crop_position'],
pad_dims=params['pad_dims'],
keep_all=keep_all)
# get crop coordinates, position of the corner closest to the image origin
img_spatial_shape = np.array(data['image'].shape[1:4])
ranges: TypeSpatialShape = np.maximum(img_spatial_shape - self.output_shape, 0)
position = np.array([random.randint(0, r) for r in ranges])
pad_dims = F.get_pad_dims(img_spatial_shape, self.output_shape)
return {'crop_position': position,
'pad_dims': pad_dims}
return f'RandomCrop({self.output_shape}, {self.always_apply}, {self.p})'
class RandomAffineTransform(DualTransform):
"""Affine transformation of the input image with randomly chosen parameters.
Args:
angle_limit (Tuple[float] | float, optional): Intervals in degrees from which angles of
rotation for the spatial axes are chosen.
Must be either of: ``A``, ``(A1, A2)``, ``(A1, A2, A3)``, or ``(A_Z1, A_Z2, A_Y1, A_Y2, A_X1, A_X2)``.
If a float, equivalent to ``(-A, A, -A, A, -A, A)``.
If a tuple with 2 items, equivalent to ``(A1, A2, A1, A2, A1, A2)``.
If a tuple with 3 items, equivalent to ``(-A1, A1, -A2, A2, -A3, A3)``.
If a tuple with 6 items, angle of rotation is randomly chosen from an interval [A_a1, A_a2] for each
spatial axis.
Defaults to ``(15, 15, 15)``.
translation_limit (Tuple[float] | float | None, optional): Intervals from which the translation parameters
Must be either of: ``T``, ``(T1, T2)``, ``(T1, T2, T3)``, or ``(T_Z1, T_Z2, T_Y1, T_Y2, T_X1, T_X2)``.
If a float, equivalent to ``(2-T, T, 2-T, T, 2-T, T)``.
If a tuple with 2 items, equivalent to ``(T1, T2, T1, T2, T1, T2)``.
If a tuple with 3 items, equivalent to ``(2-T1, T1, 2-T2, T2, 2-T3, T3)``.
If a tuple with 6 items, the translation parameter is randomly chosen from an interval [T_a1, T_a2] for
each spatial axis.
Defaults to ``(0, 0, 0)``.
scaling_limit (Tuple[float] | float, optional): Intervals from which the scales for the spatial axes are chosen.
Must be either of: ``S``, ``(S1, S2)``, ``(S1, S2, S3)``, or ``(S_Z1, S_Z2, S_Y1, S_Y2, S_X1, S_X2)``.
If a float, equivalent to ``(-S, S, -S, S, -S, S)``.
If a tuple with 2 items, equivalent to ``(S1, S2, S1, S2, S1, S2)``.
If a tuple with 3 items, equivalent to ``(-S1, S1, -S2, S2, -S3, S3)``.
If a tuple with 6 items, the scale is randomly chosen from an interval [S_a1, S_a2] for
each spatial axis.
spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.
Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.
If ``None``, equivalent to ``(1, 1, 1)``.
If a float ``S``, equivalent to ``(S, S, S)``.
Otherwise, a scale for each spatial dimension must be given.
Defaults to ``None``.
change_to_isotropic (bool, optional): Change data from anisotropic to isotropic.
Defaults to ``False``.
interpolation (str, optional): SimpleITK interpolation type for `image` and `float_mask`.
Must be one of ``linear``, ``nearest``, ``bspline``, ``gaussian``.
For `mask`, the ``nearest`` interpolation is always used.
border_mode (str, optional): Values outside image domain are filled according to this mode.
Defaults to ``'constant'``.
ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.
Defaults to ``0``.
mval (float, optional): Value of `mask` and `float_mask` voxels outside of the domain. Only applied when ``border_mode = 'constant'``.
Defaults to ``0``.
ignore_index (float | None, optional): If a float, then transformation of `mask` is done with
``border_mode = 'constant'`` and ``mval = ignore_index``.
If ``None``, this argument is ignored.
Defaults to ``None``.
always_apply (bool, optional): Always apply this transformation in composition.
Defaults to ``False``.
p (float, optional): Chance of applying this transformation in composition.
Defaults to ``0.5``.
Targets:
image, mask, float mask, key points, bounding boxes
def __init__(self, angle_limit: Union[float, TypePairFloat, TypeTripletFloat, TypeSextetFloat] = (15., 15., 15.),
translation_limit: Union[float, TypePairFloat, TypeTripletFloat, TypeSextetFloat] = (0., 0., 0.),
scaling_limit: Union[float, TypePairFloat, TypeTripletFloat, TypeSextetFloat] = (1., 1., 1.),
spacing: Union[float, TypeTripletFloat] = None,
change_to_isotropic: bool = False,
border_mode: str = 'constant', ival: float = 0, mval: float = 0,
ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 0.5):
super().__init__(always_apply, p)
self.angle_limit: TypeSextetFloat = parse_limits(angle_limit, identity_element=0)
self.translation_limit: TypeSextetFloat = parse_limits(translation_limit, identity_element=0)
self.scaling_limit: TypeSextetFloat = parse_limits(scaling_limit, identity_element=1)
self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1)
self.interpolation: int = parse_itk_interpolation(interpolation)
self.border_mode = border_mode # not used
self.mask_mode = border_mode # not used
self.ival = ival
self.mval = mval
self.keep_scale = not change_to_isotropic
if ignore_index is not None:
self.mask_mode = "constant"
self.mval = ignore_index
def apply(self, img, **params):
return F.affine(img,
scales=params["scale"],
degrees=params["angles"],
translation=params["translation"],
interpolation=self.interpolation,
border_mode=self.border_mode,
value=self.ival,
spacing=self.spacing)
def apply_to_mask(self, mask, **params):
interpolation = parse_itk_interpolation('nearest') # refers to 'sitkNearestNeighbor'
scales=params["scale"],
degrees=params["angles"],
translation=params["translation"],
interpolation=interpolation,
border_mode=self.mask_mode,
value=self.mval,
scales=params["scale"],
degrees=params["angles"],
translation=params["translation"],
interpolation=self.interpolation,
border_mode=self.mask_mode,
value=self.mval,
def apply_to_keypoints(self, keypoints, **params):
return F.affine_keypoints(keypoints,
scales=params["scale"],
degrees=params["angles"],
translation=params["translation"],
spacing=self.spacing,
domain_limit=params['domain_limit'])
def get_params(self, **data):
# set parameters of the transform
scales = sample_range_uniform(self.scaling_limit)
angles = sample_range_uniform(self.angle_limit)
translation = sample_range_uniform(self.translation_limit)
domain_limit = get_spatio_temporal_domain_limit(data)
return {
"scale": scales,
"angles": angles,
"translation": translation,
"domain_limit": domain_limit
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
}
class AffineTransform(DualTransform):
"""Affine transformation of the input image with given parameters.
Args:
angles (Tuple[float], optional): Angles of rotation for the spatial axes.
Must be: ``(A_Z, A_Y, A_X)``.
Defaults to ``(0, 0, 0)``.
translation (Tuple[float], optional): Translation vector for the spatial axes.
Must be: ``(T_Z, T_Y, T_X)``.
Defaults to ``(0, 0, 0)``.
scale (Tuple[float], optional): Scales for the spatial axes.
Must be: ``(S_Z, S_Y, S_X)``.
Defaults to ``(1, 1, 1)``.
spacing (Tuple[float, float, float], optional): Voxel spacing for individual spatial dimensions.
Must be: ``(S1, S2, S3)`` (a scale for each spatial dimension must be given).
Defaults to ``(1, 1, 1)``.
change_to_isotropic (bool, optional): Change data from anisotropic to isotropic.
Defaults to ``False``.
interpolation (str, optional): SimpleITK interpolation type for `image` and `float_mask`.
Must be one of ``linear``, ``nearest``, ``bspline``, ``gaussian``.
For `mask`, the ``nearest`` interpolation is always used.
border_mode (str, optional): Values outside image domain are filled according to this mode.
Defaults to ``'constant'``.
ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.
Defaults to ``0``.
mval (float, optional): Value of `mask` and `float_mask` voxels outside of the domain. Only applied when ``border_mode = 'constant'``.