Skip to content
Snippets Groups Projects
transforms.py 60.3 KiB
Newer Older
Lucia Hradecká's avatar
Lucia Hradecká committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
# ============================================================================================= #
#  Author:       Pavel Iakubovskii, ZFTurbo, ashawkey, Dominik Müller,                          #
#                Samuel Šuľan, Lucia Hradecká, Filip Lux                                        #
#  Copyright:    albumentations:    : https://github.com/albumentations-team                    #
#                Pavel Iakubovskii  : https://github.com/qubvel                                 #
#                ZFTurbo            : https://github.com/ZFTurbo                                #
#                ashawkey           : https://github.com/ashawkey                               #
#                Dominik Müller     : https://github.com/muellerdo                              #
#                Lucia Hradecká     : lucia.d.hradecka@gmail.com                                #
#                Filip Lux          : lux.filip@gmail.com                                       #
#                                                                                               #
#  Volumentations History:                                                                      #
#       - Original:                 https://github.com/albumentations-team/albumentations       #
#       - 3D Conversion:            https://github.com/ashawkey/volumentations                  #
#       - Continued Development:    https://github.com/ZFTurbo/volumentations                   #
#       - Enhancements:             https://github.com/qubvel/volumentations                    #
#       - Further Enhancements:     https://github.com/muellerdo/volumentations                 #
#       - Biomedical Enhancements:  https://gitlab.fi.muni.cz/cbia/bio-volumentations           #
#                                                                                               #
#  MIT License.                                                                                 #
#                                                                                               #
#  Permission is hereby granted, free of charge, to any person obtaining a copy                 #
#  of this software and associated documentation files (the "Software"), to deal                #
#  in the Software without restriction, including without limitation the rights                 #
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell                    #
#  copies of the Software, and to permit persons to whom the Software is                        #
#  furnished to do so, subject to the following conditions:                                     #
#                                                                                               #
#  The above copyright notice and this permission notice shall be included in all               #
#  copies or substantial portions of the Software.                                              #
#                                                                                               #
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR                   #
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,                     #
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE                  #
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER                       #
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,                #
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE                #
#  SOFTWARE.                                                                                    #
# ============================================================================================= #

import random
import numpy as np
from ..core.transforms_interface import DualTransform, ImageOnlyTransform
from ..augmentations import functional as F
from ..random_utils import uniform, sample_range_uniform
from typing import List, Sequence, Tuple, Union
from ..typing import TypeSextetFloat, TypeTripletFloat, TypePairFloat
from .utils import parse_limits, parse_coefs, to_tuple


# TODO potential upgrade : different sigmas for different channels
class GaussianNoise(ImageOnlyTransform):
    """Adds Gaussian noise to the image. The noise is drawn from normal distribution with given parameters.

        Args:
            var_limit (tuple, optional): Variance of normal distribution is randomly chosen from this interval.

                Defaults to ``(0.001, 0.1)``.
            mean (float, optional): Mean of normal distribution.

                Defaults to ``0``.
            always_apply (bool, optional): Always apply this transformation in composition.

                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition.

                Defaults to ``0.5``.

        Targets:
            image
    """
    def __init__(self, var_limit: tuple = (0.001, 0.1), mean: float = 0,
                 always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.var_limit = var_limit
        self.mean = mean

    def apply(self, img, **params):
        return F.gaussian_noise(img, sigma=params['sigma'], mean=self.mean)

    def get_params(self, **params):
        var = uniform(self.var_limit[0], self.var_limit[1])
        sigma = var ** 0.5
        return {"sigma": sigma}

    def __repr__(self):
        return f'GaussianNoise({self.var_limit}, {self.mean}, {self.always_apply}, {self.p})'


class PoissonNoise(ImageOnlyTransform):
    """Adds Poisson noise to the image.

        Args:
            intensity_limit (tuple): Range to sample the expected intensity of Poisson noise.

                Defaults to ``(1, 10)``.
            always_apply (bool, optional): Always apply this transformation in composition.

                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition.

                Defaults to ``0.5``.

        Targets:
            image
    """
    def __init__(self,
                 intensity_limit=(1, 10),
                 always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.intensity_limit = intensity_limit

    def apply(self, img, **params):
        return F.poisson_noise(img, intensity=params['intensity'])

    def get_params(self, **params):
        intensity = uniform(self.intensity_limit[0], self.intensity_limit[1])
        return {"intensity": intensity}

    def __repr__(self):
        return f'PoissonNoise({self.always_apply}, {self.p})'


# TODO anti_aliasing_downsample keep parameter or remove?
class Resize(DualTransform):
    """Resize input to the given shape.

        Internally, the ``skimage.transform.resize`` function is used.
        The ``interpolation``, ``border_mode``, ``ival``, ``mval``,
        and ``anti_aliasing_downsample`` arguments are forwarded to it. More details at:
        https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.resize.

        Args:
            shape (tuple of ints): The desired image shape.

                Must be of either of: ``(Z, Y, X)`` or ``(Z, Y, X, T)``.

                The unspecified dimensions (C and possibly T) are not affected.
            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.
            
                Defaults to ``0``.
            anti_aliasing_downsample (bool, optional): Controls if the Gaussian filter should be applied before
                downsampling. Recommended. 
                
                Defaults to ``True``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.
                
                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, shape: tuple, interpolation: int = 1, border_mode: str = 'reflect', ival: float = 0,
                 mval: float = 0, anti_aliasing_downsample: bool = True, ignore_index: Union[float, None] = None,
                 always_apply: bool = False, p: float = 1):
        
        super().__init__(always_apply, p)
        self.shape = shape
        self.interpolation = interpolation
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival = ival
        self.mval = mval
        self.anti_aliasing_downsample = anti_aliasing_downsample
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.resize(img, input_new_shape=self.shape, interpolation=self.interpolation,
                        border_mode=self.border_mode, cval=self.ival,
                        anti_aliasing_downsample=self.anti_aliasing_downsample)

    def apply_to_mask(self, mask, **params):
        return F.resize(mask, input_new_shape=self.shape, interpolation=0,
                        border_mode=self.mask_mode, cval=self.mval, anti_aliasing_downsample=False,
                        mask=True)

    def apply_to_float_mask(self, mask, **params):
        return F.resize(mask, input_new_shape=self.shape, interpolation=self.interpolation,
                        border_mode=self.mask_mode, cval=self.mval, anti_aliasing_downsample=False,
                        mask=True)
        
    def __repr__(self):
        return f'Resize({self.shape}, {self.interpolation}, {self.border_mode} , {self.ival}, {self.mval},' \
               f'{self.anti_aliasing_downsample},   {self.always_apply}, {self.p})'


class Scale(DualTransform):
    """Rescale input by the given scale.

        Args:
            scales (float|List[float], optional): Value by which the input should be scaled.

                Must be either of: ``S``, ``[S_Z, S_Y, S_X]``, or ``[S_Z, S_Y, S_X, S_T]``.

                If a float, then all spatial dimensions are scaled by it (equivalent to ``[S, S, S]``).

                The unspecified dimensions (C and possibly T) are not affected.

                Defaults to ``1``.
            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.
            spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.

                Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.

                If ``None``, equivalent to ``(1, 1, 1)``.

                If a float ``S``, equivalent to ``(S, S, S)``.

                Otherwise, a scale for each spatial dimension must be given.

                Defaults to ``None``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'constant'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, scales: Union[float, TypeTripletFloat] = 1,
                 interpolation: int = 1, spacing: Union[float, TypeTripletFloat] = None,
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 1):
        super().__init__(always_apply, p)
        self.scale = parse_coefs(scales, identity_element=1.)
        self.interpolation: int = interpolation
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1.)
        self.border_mode = border_mode              # not implemented
        self.mask_mode = border_mode                # not implemented
        self.ival = ival
        self.mval = mval
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.affine(img,
                        scales=self.scale,
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = 0   # refers to 'sitkNearestNeighbor'
        return F.affine(mask,
                        scales=self.scale,
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
                        spacing=self.spacing)

    def apply_to_float_mask(self, mask, **params):
        return F.affine(mask,
                        scales=self.scale,
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
                        spacing=self.spacing)

    def __repr__(self):
        return f'Scale({self.scale}, {self.interpolation}, {self.border_mode}, {self.ival}, {self.mval},' \
               f'{self.always_apply}, {self.p})'


# TODO cannot rescale T dimension
class RandomScale(DualTransform):
    """Randomly rescale input.

        Args:
            scaling_limit (float | Tuple[float] | List[Tuple[float]], optional): Limits of scaling factors.

                Must be either of: ``S``, ``(S1, S2)``, ``(S_Z, S_Y, S_X)``, or ``(S_Z1, S_Z2, S_Y1, S_Y2, S_X1, S_X2)``.

                If a float ``S``, then all spatial dimensions are scaled by a random number drawn uniformly from
                the interval [1-S, 1+S] (equivalent to inputting ``(1-S, 1+S, 1-S, 1+S, 1-S, 1+S)``).

                If a tuple of 2 floats, then all spatial dimensions are scaled by a random number drawn uniformly
                from the interval [S1, S2] (equivalent to inputting ``(S1, S2, S1, S2, S1, S2)``).

                If a tuple of 3 floats, then an interval [1-S_a, 1+S_a] is constructed for each spatial
                dimension and the scale is randomly drawn from it
                (equivalent to inputting ``(1-S_Z, 1+S_Z, 1-S_Y, 1+S_Y, 1-S_X, 1+S_X)``).

                If a tuple of 6 floats, the scales for individual spatial dimensions are randomly drawn from the
                respective intervals [S_Z1, S_Z2], [S_Y1, S_Y2], [S_X1, S_X2].

                The unspecified dimensions (C and T) are not affected.

                Defaults to ``(0.9, 1.1)``.

            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.

            spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.

                Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.

                If ``None``, equivalent to ``(1, 1, 1)``.

                If a float ``S``, equivalent to ``(S, S, S)``.

                Otherwise, a scale for each spatial dimension must be given.

                Defaults to ``None``.

            border_mode (str, optional): Values outside image domain are filled according to the mode.

                Defaults to ``'constant'``.

            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.

            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.

            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.

            always_apply (bool, optional): Always apply this transformation in composition.

                Defaults to ``False``.

            p (float, optional): Chance of applying this transformation in composition.

                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """      
    def __init__(self, scaling_limit: Union[float, TypePairFloat, TypeTripletFloat, TypeSextetFloat] = (0.9, 1.1),
                 interpolation: int = 1, spacing: Union[float, TypeTripletFloat] = None,
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.scaling_limit: TypeSextetFloat = parse_limits(scaling_limit)
        self.interpolation: int = interpolation
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1.)
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival: float = ival
        self.mval: float = mval
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def get_params(self, **data):
        # set parameters of the transform
        scale = sample_range_uniform(self.scaling_limit)

        return {
            "scale": scale,
        }

    def apply(self, img, **params):
        return F.affine(img,
                        scales=params["scale"],
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = 0   # refers to 'sitkNearestNeighbor'
        return F.affine(mask,
                        scales=params["scale"],
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
                        spacing=self.spacing)

    def apply_to_float_mask(self, mask, **params):
        return F.affine(mask,
                        scales=params["scale"],
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
                        spacing=self.spacing)

    def __repr__(self):
        return f'RandomScale({self.scaling_limit}, {self.interpolation}, {self.always_apply}, {self.p})'


class RandomRotate90(DualTransform):
    """Rotation of input by 0, 90, 180, or 270 degrees around the specified spatial axes.

        Args:
            axes (List[int], optional): List of axes around which the input is rotated. Recognised axis symbols are
                ``1`` for Z, ``2`` for Y, and ``3`` for X. A single axis can occur multiple times in the list.
                If ``shuffle_axis = False``, the order of axes determines the order of transformations.

                Defaults to ``[1, 2, 3]``.
            shuffle_axis (bool, optional): If set to ``True``, the order of rotations is random.

                Defaults to ``False``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, axes: List[int] = None, shuffle_axis: bool = False,
                 always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.axes = axes
        self.shuffle_axis = shuffle_axis

    def apply(self, img, **params):
        for factor, axes in zip(params["factor"], params["rotation_around"]):
            img = np.rot90(img, factor, axes=axes)
        return img

    def apply_to_mask(self, mask, **params):
        for i in range(len(params["rotation_around"])):
            mask = np.rot90(mask, params["factor"][i], axes=(
                params["rotation_around"][i][0] - 1, params["rotation_around"][i][1] - 1))
        return mask

    def get_params(self, **data):

        # Rotate by all axis by default
        if self.axes is None:
            self.axes = [1, 2, 3]

        # Create all combinations for rotating
        axes_to_rotate = {1: (2, 3), 2: (1, 3), 3: (1, 2)}
        rotation_around = []
        for i in self.axes:
            if i in axes_to_rotate.keys():
                rotation_around.append(axes_to_rotate[i])

        # shuffle order of axis
        if self.shuffle_axis:
            random.shuffle(rotation_around)

        # choose angle to rotate
        factor = [random.randint(0, 3) for _ in range(len(rotation_around))]
        return {"factor": factor,
                "rotation_around": rotation_around}

    def __repr__(self):
        return f'RandomRotate90({self.axes}, {self.always_apply}, {self.p})'


class Flip(DualTransform):
    """Flip input around the specified spatial axes.

        Args:
            axes (List[int], optional): List of axes around which is flip done. Recognised axis symbols are
                ``1`` for Z, ``2`` for Y, and ``3`` for X.

                Defaults to ``[1,2,3]``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, axes: List[int] = None, always_apply=False, p=1):
        super().__init__(always_apply, p)
        self.axes = axes

    def apply(self, img, **params):
        return np.flip(img, params["axes"])

    def apply_to_mask(self, mask, **params):
        # Mask has no dimension channel
        return np.flip(mask, axis=[item - 1 for item in params["axes"]])

    def get_params(self, **data):
        if self.axes is None:
            axes = [1, 2, 3]
        else:
            axes = self.axes
        return {"axes": axes}

    def __repr__(self):
        return f'Flip({self.axes}, {self.always_apply}, {self.p})'


# TODO include possibility to pick empty combination = no flipping
class RandomFlip(DualTransform):
    """Flip input around a set of axes randomly chosen from the input list of axis combinations.

        Args:
            axes_to_choose (List[Tuple[int]] or None, optional): List of axis combinations from which one option
                is randomly chosen. Recognised axis symbols are ``1`` for Z, ``2`` for Y, and ``3`` for X.
                The image will be flipped around all axes in the chosen combination.

                If ``None``, a random subset of spatial axes is chosen, corresponding to inputting
                ``[(1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]``.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, axes_to_choose: Union[None, List[Tuple[int]]] = None, always_apply=False, p=0.5):
        super().__init__(always_apply, p)
        self.axes = axes_to_choose

    def apply(self, img, **params):
        return np.flip(img, params["axes"])

    def apply_to_mask(self, mask, **params):
        # Mask has no dimension channel
        return np.flip(mask, axis=[item - 1 for item in params["axes"]])

    def get_params(self, **data):
        
        if self.axes is None or len(self.axes) == 0:
            # Pick random combination of axes to flip
            # TODO include possibility to pick empty combination = no flipping
            combinations = [(1,), (2,), (3,), (1, 2),
                            (1, 3), (2, 3), (1, 2, 3)]
            axes = random.choice(combinations)
        else:
            # Pick a random choice from input
            axes = random.choice(self.axes)
        return {"axes": axes}

    def __repr__(self):
        return f'Flip({self.axes}, {self.always_apply}, {self.p})'


class CenterCrop(DualTransform):
    """Crops the central region of the input of given size.
          
        Unlike ``CenterCrop`` from `Albumentations`, this transform pads the input in dimensions
        where the input is smaller than the ``shape`` with ``numpy.pad``. The ``border_mode``, ``ival`` and ``mval``
        arguments are forwarded to ``numpy.pad`` if padding is necessary. More details at:
        https://numpy.org/doc/stable/reference/generated/numpy.pad.html.

        Args:
            shape (Tuple[int]): The desired shape of input.

                Must be either of: ``[Z, Y, X]`` or ``[Z, Y, X, T]``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            ival (float | Sequence, optional): Values of `image` voxels outside of the `image` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            mval (float | Sequence, optional): Values of `mask` voxels outside of the `mask` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, shape: Tuple[int], border_mode: str = "reflect", ival: Union[Sequence[float], float] = (0, 0),
                 mval: Union[Sequence[float], float] = (0, 0), ignore_index: Union[float, None] = None,
                 always_apply: bool = False, p: float = 1.0):
        super().__init__(always_apply, p)
        self.shape = np.asarray(shape, dtype=np.intc)
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival = ival
        self.mval = mval
        
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.center_crop(img, self.shape, self.border_mode, self.ival, False)

    def apply_to_mask(self, mask, **params):
        return F.center_crop(mask, self.shape, self.mask_mode, self.mval, True)

    def __repr__(self):
        return f'CenterCrop({self.shape}, {self.always_apply}, {self.p})'


class RandomCrop(DualTransform):
    """Randomly crops a region of given size from the input.

        Unlike ``RandomCrop`` from `Albumentations`, this transform pads the input in dimensions
        where the input is smaller than the ``shape`` with ``numpy.pad``. The ``border_mode``, ``ival`` and ``mval``
        arguments are forwarded to ``numpy.pad`` if padding is necessary. More details at:
        https://numpy.org/doc/stable/reference/generated/numpy.pad.html.

        Args:
            shape (Tuple[int]): The desired shape of input.

                Must be either of: ``[Z, Y, X]`` or ``[Z, Y, X, T]``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            ival (float | Sequence, optional): Values of `image` voxels outside of the `image` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            mval (float | Sequence, optional): Values of `mask` voxels outside of the `mask` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, shape: tuple, border_mode: str = "reflect", ival: Union[Sequence[float], float] = (0, 0),
                 mval: Union[Sequence[float], float] = (0, 0), ignore_index: Union[float, None] = None,
                 always_apply: bool = False, p: float = 1.0):
        super().__init__(always_apply, p)
        self.shape = np.asarray(shape, dtype=np.intc)
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival = ival
        self.mval = mval

        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, crop_start=np.array((0, 0, 0))):
        return F.random_crop(img, self.shape, crop_start, self.border_mode, self.ival, mask=False)

    def apply_to_mask(self, mask, crop_start=np.array((0, 0, 0))):
        return F.random_crop(mask, self.shape, crop_start, self.mask_mode, self.mval, mask=True)

    def get_params(self, **data):

        return {
            "crop_start": [random.random() for _ in range(len(self.shape))]
        }

    def __repr__(self):
        return f'RandomCrop({self.shape}, {self.always_apply}, {self.p})'


class RandomAffineTransform(DualTransform):
    """Affine transformation of the input image with randomly chosen parameters.

        Args:
            angle_limit (Tuple[float] | float, optional): Intervals in degrees from which angles of
                rotation for the spatial axes are chosen.

                Must be either of: ``A``, ``(A1, A2)``, or ``(A_Z1, A_Z2, A_Y1, A_Y2, A_X1, A_X2)``.

                If a float, equivalent to ``(-A, A, -A, A, -A, A)``.

                If a tuple with 2 items, equivalent to ``(A1, A2, A1, A2, A1, A2)``.

                If a tuple with 6 items, angle of rotation is randomly chosen from an interval [A_a1, A_a2] for each
                spatial axis.

                Defaults to ``(15, 15, 15)``.
            translation_limit (Tuple[int] | int | None, optional): Intervals from which the translation parameters
                for the spatial axes are chosen.

                Must be either of: ``T``, ``(T1, T2)``, or ``(T_Z1, T_Z2, T_Y1, T_Y2, T_X1, T_X2)``.

                If a float, equivalent to ``(-T, T, -T, T, -T, T)``.

                If a tuple with 2 items, equivalent to ``(T1, T2, T1, T2, T1, T2)``.

                If a tuple with 6 items, the translation parameter is randomly chosen from an interval [T_a1, T_a2] for
                each spatial axis.

                Defaults to ``(0, 0, 0)``.
            scaling_limit (Tuple[float] | float, optional): Intervals from which the scales for the spatial axes are chosen.

                Must be either of: ``S``, ``(S1, S2)``, or ``(S_Z1, S_Z2, S_Y1, S_Y2, S_X1, S_X2)``.

                If a float, equivalent to ``(1-S, 1+S, 1-S, 1+S, 1-S, 1+S)``.

                If a tuple with 2 items, equivalent to ``(S1, S2, S1, S2, S1, S2)``.

                If a tuple with 6 items, the scale is randomly chosen from an interval [S_a1, S_a2] for
                each spatial axis.

                Defaults to ``(0.2, 0.2, 0.2)``.
            spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.

                Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.

                If ``None``, equivalent to ``(1, 1, 1)``.

                If a float ``S``, equivalent to ``(S, S, S)``.

                Otherwise, a scale for each spatial dimension must be given.

                Defaults to ``None``.
            change_to_isotropic (bool, optional): Change data from anisotropic to isotropic.

                Defaults to ``False``.
            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'constant'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, angle_limit: Union[float, TypePairFloat, TypeSextetFloat] = (15, 15, 15),
                 translation_limit: Union[float, TypePairFloat, TypeSextetFloat] = (0, 0, 0),
                 scaling_limit: Union[float, TypePairFloat, TypeSextetFloat] = (0.2, 0.2, 0.2),
                 spacing: Union[float, TypeTripletFloat] = None,
                 change_to_isotropic: bool = False,
                 interpolation: int = 1,
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.angle_limit: TypeSextetFloat = parse_limits(angle_limit, identity_element=0)
        self.translation_limit: TypeSextetFloat = parse_limits(translation_limit, identity_element=0)
        self.scaling_limit: TypeSextetFloat = parse_limits(scaling_limit, identity_element=1)
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1)
        self.interpolation: int = interpolation
        self.border_mode = border_mode                 # not used
        self.mask_mode = border_mode                   # not used
        self.ival = ival
        self.mval = mval
        self.keep_scale = not change_to_isotropic

        if ignore_index is not None:
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.affine(img,
                        scales=params["scale"],
                        degrees=params["angles"],
                        translation=params["translation"],
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = 0   # refers to 'sitkNearestNeighbor'
        return F.affine(mask,
                        scales=params["scale"],
                        degrees=params["angles"],
                        translation=params["translation"],
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
                        spacing=self.spacing)

    def apply_to_float_mask(self, mask, **params):
        return F.affine(mask,
                        scales=params["scale"],
                        degrees=params["angles"],
                        translation=params["translation"],
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
                        spacing=self.spacing)

    def get_params(self, **data):

        # set parameters of the transform
        scales = sample_range_uniform(self.scaling_limit)
        angles = sample_range_uniform(self.angle_limit)
        translation = sample_range_uniform(self.translation_limit)

        return {
            "scale": scales,
            "angles": angles,
            "translation": translation
        }


class AffineTransform(DualTransform):
    """Affine transformation of the input image with given parameters.

        Args:
            angles (Tuple[float], optional): Angles of rotation for the spatial axes.

                Must be: ``(A_Z, A_Y, A_X)``.

                Defaults to ``(0, 0, 0)``.
            translation (Tuple[float], optional): Translation vector for the spatial axes.

                Must be: ``(T_Z, T_Y, T_X)``.

                Defaults to ``(0, 0, 0)``.
            scale (Tuple[float], optional): Scales for the spatial axes.

                Must be: ``(S_Z, S_Y, S_X)``.

                Defaults to ``(1, 1, 1)``.
            spacing (Tuple[float, float, float], optional): Voxel spacing for individual spatial dimensions.

                Must be: ``(S1, S2, S3)`` (a scale for each spatial dimension must be given).

                Defaults to ``(1, 1, 1)``.
            change_to_isotropic (bool, optional): Change data from anisotropic to isotropic.

                Defaults to ``False``.
            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'constant'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, angles: TypeTripletFloat = (0, 0, 0),
                 translation: TypeTripletFloat = (0, 0, 0),
                 scale: TypeTripletFloat = (1, 1, 1),
                 spacing: TypeTripletFloat = (1, 1, 1),
                 change_to_isotropic: bool = False,
                 interpolation: int = 1,
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.angles: TypeTripletFloat = parse_coefs(angles, identity_element=0)
        self.translation: TypeTripletFloat = parse_coefs(translation, identity_element=0)
        self.scale: TypeTripletFloat = parse_coefs(scale, identity_element=1)
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1)
        self.interpolation: int = interpolation
        self.border_mode = border_mode                 # not used
        self.mask_mode = border_mode                   # not used
        self.ival = ival
        self.mval = mval
        self.keep_scale = not change_to_isotropic

        if ignore_index is not None:
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.affine(img,
                        scales=self.scale,
                        degrees=self.angles,
                        translation=self.translation,
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = 0   # refers to 'sitkNearestNeighbor'
        return F.affine(mask,
                        scales=self.scale,
                        degrees=self.angles,
                        translation=self.translation,
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
                        spacing=self.spacing)

    def apply_to_float_mask(self, mask, **params):
        return F.affine(mask,
                        scales=self.scale,
                        degrees=self.angles,
                        translation=self.translation,
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
                        spacing=self.spacing)


# TODO create checks (mean, std, got good shape, and etc.), what if given list but only one channel, and reverse.
class NormalizeMeanStd(ImageOnlyTransform):
    """Normalize image values to have mean 0 and standard deviation 1, given channel-wise means and standard deviations.

        For a single-channel image, the normalization is applied by the formula: :math:`img = (img - mean) / std`.
        If the image contains more channels, then the previous formula is used for each channel separately.

        It is recommended to input dataset-wide means and standard deviations.

        Args:
            mean (float | List[float]): Channel-wise image mean.

                Must be either of: ``M``, ``(M_1, M_2, ..., M_C)``.
            std (float | List[float]): Channel-wise image standard deviation.

                Must be either of: ``S``, ``(S_1, S_2, ..., S_C)``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``True``.