Skip to content
Snippets Groups Projects
transforms.py 69 KiB
Newer Older
Lucia Hradecká's avatar
Lucia Hradecká committed
# ============================================================================================= #
#  Author:       Pavel Iakubovskii, ZFTurbo, ashawkey, Dominik Müller,                          #
#                Samuel Šuľan, Lucia Hradecká, Filip Lux                                        #
#  Copyright:    albumentations:    : https://github.com/albumentations-team                    #
#                Pavel Iakubovskii  : https://github.com/qubvel                                 #
#                ZFTurbo            : https://github.com/ZFTurbo                                #
#                ashawkey           : https://github.com/ashawkey                               #
#                Dominik Müller     : https://github.com/muellerdo                              #
#                Lucia Hradecká     : lucia.d.hradecka@gmail.com                                #
#                Filip Lux          : lux.filip@gmail.com                                       #
#                                                                                               #
#  Volumentations History:                                                                      #
#       - Original:                 https://github.com/albumentations-team/albumentations       #
#       - 3D Conversion:            https://github.com/ashawkey/volumentations                  #
#       - Continued Development:    https://github.com/ZFTurbo/volumentations                   #
#       - Enhancements:             https://github.com/qubvel/volumentations                    #
#       - Further Enhancements:     https://github.com/muellerdo/volumentations                 #
#       - Biomedical Enhancements:  https://gitlab.fi.muni.cz/cbia/bio-volumentations           #
#                                                                                               #
#  MIT License.                                                                                 #
#                                                                                               #
#  Permission is hereby granted, free of charge, to any person obtaining a copy                 #
#  of this software and associated documentation files (the "Software"), to deal                #
#  in the Software without restriction, including without limitation the rights                 #
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell                    #
#  copies of the Software, and to permit persons to whom the Software is                        #
#  furnished to do so, subject to the following conditions:                                     #
#                                                                                               #
#  The above copyright notice and this permission notice shall be included in all               #
#  copies or substantial portions of the Software.                                              #
#                                                                                               #
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR                   #
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,                     #
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE                  #
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER                       #
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,                #
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE                #
#  SOFTWARE.                                                                                    #
# ============================================================================================= #

import random
import numpy as np
from ..core.transforms_interface import DualTransform, ImageOnlyTransform
from ..augmentations import functional as F
from ..augmentations.spatial_funcional import get_affine_transform, parse_itk_interpolation
Lucia Hradecká's avatar
Lucia Hradecká committed
from ..random_utils import uniform, sample_range_uniform
from typing import List, Sequence, Tuple, Union
from ..biovol_typing import TypeSextetFloat, TypeTripletFloat, TypePairFloat, TypeSpatioTemporalCoordinate,\
Filip Lux's avatar
Filip Lux committed
    TypeSextetInt, TypeSpatialCoordinate, TypeSpatialShape
from .utils import parse_limits, parse_coefs, parse_pads, to_tuple, validate_bbox, get_spatio_temporal_domain_limit,\
    to_spatio_temporal
Lucia Hradecká's avatar
Lucia Hradecká committed


# TODO anti_aliasing_downsample keep parameter or remove?
class Resize(DualTransform):
    """Resize input to the given shape.

        Internally, the ``skimage.transform.resize`` function is used.
        The ``interpolation``, ``border_mode``, ``ival``, ``mval``,
        and ``anti_aliasing_downsample`` arguments are forwarded to it. More details at:
        https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.resize.

        Args:
            shape (tuple of ints): The desired image shape.

                Must be of either of: ``(Z, Y, X)`` or ``(Z, Y, X, T)``.

                The unspecified dimensions (C and possibly T) are not affected.
            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.
            
                Defaults to ``0``.
            anti_aliasing_downsample (bool, optional): Controls if the Gaussian filter should be applied before
                downsampling. Recommended. 
                
                Defaults to ``True``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.
                
                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, shape: tuple, interpolation: int = 1, border_mode: str = 'reflect', ival: float = 0,
                 mval: float = 0, anti_aliasing_downsample: bool = True, ignore_index: Union[float, None] = None,
                 always_apply: bool = False, p: float = 1):
        
        super().__init__(always_apply, p)
        self.shape: TypeSpatioTemporalCoordinate = to_spatio_temporal(shape)
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.interpolation = interpolation
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival = ival
        self.mval = mval
        self.anti_aliasing_downsample = anti_aliasing_downsample
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.resize(img, input_new_shape=self.shape, interpolation=self.interpolation,
                        border_mode=self.border_mode, cval=self.ival,
                        anti_aliasing_downsample=self.anti_aliasing_downsample)

    def apply_to_mask(self, mask, **params):
        return F.resize(mask, input_new_shape=self.shape, interpolation=0,
                        border_mode=self.mask_mode, cval=self.mval, anti_aliasing_downsample=False,
                        mask=True)

    def apply_to_float_mask(self, mask, **params):
        return F.resize(mask, input_new_shape=self.shape, interpolation=self.interpolation,
                        border_mode=self.mask_mode, cval=self.mval, anti_aliasing_downsample=False,
                        mask=True)

    def apply_to_keypoints(self, keypoints, **params):
        return F.resize_keypoints(keypoints,
                                  domain_limit=params['domain_limit'],
                                  new_shape=self.shape)

    """
    def apply_to_bboxes(self, bboxes, **params):
        for bbox in bboxes:
            new_bbox = F.resize_keypoints(bbox,
                                          input_new_shape=self.shape,
                                          original_shape=params['original_shape'],
                                          keep_all=True)

            if validate_bbox(bbox, new_bbox, min_overlay_ratio):
                res.append(new_bbox)

        return res
    """

    def get_params(self, **data):

        # read shape of the original image
        domain_limit: TypeSpatioTemporalCoordinate = get_spatio_temporal_domain_limit(data)

        return {
            "domain_limit": domain_limit,
        }
Lucia Hradecká's avatar
Lucia Hradecká committed
        
    def __repr__(self):
        return f'Resize({self.shape}, {self.interpolation}, {self.border_mode} , {self.ival}, {self.mval},' \
               f'{self.anti_aliasing_downsample},   {self.always_apply}, {self.p})'


class Scale(DualTransform):
    """Rescale input by the given scale.

        Args:
            scales (float|List[float], optional): Value by which the input should be scaled.

                Must be either of: ``S``, ``[S_Z, S_Y, S_X]``, or ``[S_Z, S_Y, S_X, S_T]``.

                If a float, then all spatial dimensions are scaled by it (equivalent to ``[S, S, S]``).

                The unspecified dimensions (C and possibly T) are not affected.

                Defaults to ``1``.
            interpolation (str, optional): ITK interpolation type for image data.
Lucia Hradecká's avatar
Lucia Hradecká committed

                One of ``linear``, ``nearest``, ``bspline``, ``gaussian``.
                There is always 'nearest' interpolation for labeled masks.

                Defaults to ``linear``.
Lucia Hradecká's avatar
Lucia Hradecká committed
            spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.

                Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.

                If ``None``, equivalent to ``(1, 1, 1)``.

                If a float ``S``, equivalent to ``(S, S, S)``.

                Otherwise, a scale for each spatial dimension must be given.

                Defaults to ``None``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'constant'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, scales: Union[float, TypeTripletFloat] = 1,
                 interpolation: str = 'linear', spacing: Union[float, TypeTripletFloat] = None,
Lucia Hradecká's avatar
Lucia Hradecká committed
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 1):
        super().__init__(always_apply, p)
        self.scale = parse_coefs(scales, identity_element=1.)
        self.interpolation: str = parse_itk_interpolation(interpolation)
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1.)
        self.border_mode = border_mode              # not implemented
        self.mask_mode = border_mode                # not implemented
        self.ival = ival
        self.mval = mval
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.affine(img,
                        scales=self.scale,
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = parse_itk_interpolation('nearest')   # refers to 'sitkNearestNeighbor'
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=self.scale,
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_float_mask(self, mask, **params):
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=self.scale,
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_keypoints(self, keypoints, **params):
        return F.affine_keypoints(keypoints,
                                  scales=self.scale,
                                  spacing = self.spacing,
                                  domain_limit=params['domain_limit'])

    """
    def apply_to_bboxes(self, bboxes, **params):
        for bbox in bboxes:
            new_bbox = F.affine_keypoints(bbox,
                                          scales=self.scale,
                                          domain_limit=params['domain_limit'],
                                          spacing = self.spacing,
                                          keep_all=True)

            if validate_bbox(bbox, new_bbox):
                res.append(new_bbox)

        return res
    """

    def get_params(self, **data):
        domain_limit: TypeSpatioTemporalCoordinate = get_spatio_temporal_domain_limit(data)
        return {'domain_limit': domain_limit}

Lucia Hradecká's avatar
Lucia Hradecká committed
    def __repr__(self):
        return f'Scale({self.scale}, {self.interpolation}, {self.border_mode}, {self.ival}, {self.mval},' \
               f'{self.always_apply}, {self.p})'


# TODO cannot rescale T dimension
class RandomScale(DualTransform):
    """Randomly rescale input.

        Args:
            scaling_limit (float | Tuple[float] | List[Tuple[float]], optional): Limits of scaling factors.

                Must be either of: ``S``, ``(S1, S2)``, ``(S_Z, S_Y, S_X)``, or ``(S_Z1, S_Z2, S_Y1, S_Y2, S_X1, S_X2)``.

                If a float ``S``, then all spatial dimensions are scaled by a random number drawn uniformly from
                the interval [1-S, 1+S] (equivalent to inputting ``(1-S, 1+S, 1-S, 1+S, 1-S, 1+S)``).

                If a tuple of 2 floats, then all spatial dimensions are scaled by a random number drawn uniformly
                from the interval [S1, S2] (equivalent to inputting ``(S1, S2, S1, S2, S1, S2)``).

                If a tuple of 3 floats, then an interval [1-S_a, 1+S_a] is constructed for each spatial
                dimension and the scale is randomly drawn from it
                (equivalent to inputting ``(1-S_Z, 1+S_Z, 1-S_Y, 1+S_Y, 1-S_X, 1+S_X)``).

                If a tuple of 6 floats, the scales for individual spatial dimensions are randomly drawn from the
                respective intervals [S_Z1, S_Z2], [S_Y1, S_Y2], [S_X1, S_X2].

                The unspecified dimensions (C and T) are not affected.

                Defaults to ``(0.9, 1.1)``.

            interpolation (str, optional): ITK interpolation type for image data.
Lucia Hradecká's avatar
Lucia Hradecká committed

                One of ``linear``, ``nearest``, ``bspline``, ``gaussian``.
                There is always 'nearest' interpolation for labeled masks.

                Defaults to ``linear``.
Lucia Hradecká's avatar
Lucia Hradecká committed

            spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.

                Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.

                If ``None``, equivalent to ``(1, 1, 1)``.

                If a float ``S``, equivalent to ``(S, S, S)``.

                Otherwise, a scale for each spatial dimension must be given.

                Defaults to ``None``.

            border_mode (str, optional): Values outside image domain are filled according to the mode.

                Defaults to ``'constant'``.

            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.

            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.

            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.

            always_apply (bool, optional): Always apply this transformation in composition.

                Defaults to ``False``.

            p (float, optional): Chance of applying this transformation in composition.

                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """      
    def __init__(self, scaling_limit: Union[float, TypePairFloat, TypeTripletFloat, TypeSextetFloat] = (0.9, 1.1),
                 interpolation: str = 'linear', spacing: Union[float, TypeTripletFloat] = None,
Lucia Hradecká's avatar
Lucia Hradecká committed
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.scaling_limit: TypeSextetFloat = parse_limits(scaling_limit)
        self.interpolation: str = parse_itk_interpolation(interpolation)
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1.)
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival: float = ival
        self.mval: float = mval
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def get_params(self, **data):
        # set parameters of the transform
        domain_limit: TypeSpatioTemporalCoordinate = get_spatio_temporal_domain_limit(data)
Lucia Hradecká's avatar
Lucia Hradecká committed
        scale = sample_range_uniform(self.scaling_limit)

        return {
            "domain_limit": domain_limit,
Lucia Hradecká's avatar
Lucia Hradecká committed
            "scale": scale,
        }

    def apply(self, img, **params):
        return F.affine(img,
                        scales=params["scale"],
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = parse_itk_interpolation('nearest')   # refers to 'sitkNearestNeighbor'
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=params["scale"],
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_float_mask(self, mask, **params):
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=params["scale"],
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_keypoints(self, keypoints, **params):
        return F.affine_keypoints(keypoints,
                                  scales=params["scale"],
                                  spacing=self.spacing,
                                  domain_limit=params['domain_limit'])

Lucia Hradecká's avatar
Lucia Hradecká committed
    def __repr__(self):
        return f'RandomScale({self.scaling_limit}, {self.interpolation}, {self.always_apply}, {self.p})'


class RandomRotate90(DualTransform):
    """Rotation of input by 0, 90, 180, or 270 degrees around the specified spatial axes.

        Args:
            axes (List[int], optional): List of axes around which the input is rotated. Recognised axis symbols are
                ``1`` for Z, ``2`` for Y, and ``3`` for X. A single axis can occur multiple times in the list.
                If ``shuffle_axis = False``, the order of axes determines the order of transformations.

                Defaults to ``[1, 2, 3]``.
            shuffle_axis (bool, optional): If set to ``True``, the order of rotations is random.

                Defaults to ``False``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, axes: List[int] = None, shuffle_axis: bool = False, factor = None,
Lucia Hradecká's avatar
Lucia Hradecká committed
                 always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.axes = axes
        self.shuffle_axis = shuffle_axis
        self.factor = factor
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply(self, img, **params):
        for factor, axes in zip(params["factor"], params["rotation_around"]):
            img = np.rot90(img, factor, axes=axes)
        return img

    def apply_to_mask(self, mask, **params):
Filip Lux's avatar
Filip Lux committed
        for rot, factor in zip(params["rotation_around"], params["factor"]):
            mask = np.rot90(mask, factor, axes=(rot[0] - 1, rot[1] - 1))
Lucia Hradecká's avatar
Lucia Hradecká committed
        return mask

Filip Lux's avatar
Filip Lux committed
    def apply_to_keypoints(self, keypoints, **params):
Filip Lux's avatar
Filip Lux committed
        for rot, factor in zip(params["rotation_around"], params["factor"]):
            keypoints = F.rot90_keypoints(keypoints,
                                          factor=factor,
                                          axes=(rot[0], rot[1]),
Filip Lux's avatar
Filip Lux committed
                                          img_shape=params['img_shape'])
        return keypoints

Lucia Hradecká's avatar
Lucia Hradecká committed
    def get_params(self, **data):

        # Rotate by all axis by default
        if self.axes is None:
            self.axes = [1, 2, 3]

        # Create all combinations for rotating
        axes_to_rotate = {1: (2, 3), 2: (1, 3), 3: (1, 2)}
        rotation_around = []
        for i in self.axes:
            if i in axes_to_rotate.keys():
                rotation_around.append(axes_to_rotate[i])

        # shuffle order of axis
        if self.shuffle_axis:
            random.shuffle(rotation_around)

        # choose angle to rotate
        if self.factor is None:
            factor = [random.randint(0, 3) for _ in range(len(rotation_around))]
        else:
            factor = [self.factor]
            rotation_around = [(1, 2)]
            print('ROT90', factor, rotation_around)

Filip Lux's avatar
Filip Lux committed
        img_shape = np.array(data['image'].shape[1:4])

Lucia Hradecká's avatar
Lucia Hradecká committed
        return {"factor": factor,
Filip Lux's avatar
Filip Lux committed
                "rotation_around": rotation_around,
                "img_shape": img_shape}
Lucia Hradecká's avatar
Lucia Hradecká committed

    def __repr__(self):
        return f'RandomRotate90({self.axes}, {self.always_apply}, {self.p})'


class Flip(DualTransform):
    """Flip input around the specified spatial axes.

        Args:
            axes (List[int], optional): List of axes around which is flip done. Recognised axis symbols are
                ``1`` for Z, ``2`` for Y, and ``3`` for X.

                Defaults to ``[1,2,3]``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, axes: List[int] = None, always_apply=False, p=1):
        super().__init__(always_apply, p)
        self.axes = axes

    def apply(self, img, **params):
        return np.flip(img, params["axes"])

    def apply_to_mask(self, mask, **params):
        # Mask has no dimension channel
        return np.flip(mask, axis=[item - 1 for item in params["axes"]])

Filip Lux's avatar
Filip Lux committed
    def apply_to_keypoints(self, keypoints, **params):
Filip Lux's avatar
Filip Lux committed
        return F.flip_keypoints(keypoints,
                                axes=params['axes'],
                                img_shape=params['img_shape'])

Lucia Hradecká's avatar
Lucia Hradecká committed
    def get_params(self, **data):
Filip Lux's avatar
Filip Lux committed
        axes = [1, 2, 3] if self.axes is None else self.axes
        img_shape = np.array(data['image'].shape[1:4])
        return {"axes": axes,
                "img_shape": img_shape}
Lucia Hradecká's avatar
Lucia Hradecká committed

    def __repr__(self):
        return f'Flip({self.axes}, {self.always_apply}, {self.p})'


# TODO include possibility to pick empty combination = no flipping
class RandomFlip(DualTransform):
    """Flip input around a set of axes randomly chosen from the input list of axis combinations.

        Args:
Filip Lux's avatar
Filip Lux committed
            axes_to_choose (List[Tuple[int]] or None, optional): List of axis indices from which one option
Lucia Hradecká's avatar
Lucia Hradecká committed
                is randomly chosen. Recognised axis symbols are ``1`` for Z, ``2`` for Y, and ``3`` for X.
                The image will be flipped around all axes in the chosen combination.

                If ``None``, a random subset of spatial axes is chosen, corresponding to inputting
Filip Lux's avatar
Filip Lux committed
                ``[(,), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]``.
Lucia Hradecká's avatar
Lucia Hradecká committed

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, axes_to_choose: Union[None, List[Tuple[int]]] = None, always_apply=False, p=0.5):
        super().__init__(always_apply, p)
Filip Lux's avatar
Filip Lux committed

Filip Lux's avatar
Filip Lux committed
        # TODO: check if input value `axes_to_choice` valid
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.axes = axes_to_choose

    def apply(self, img, **params):
        return np.flip(img, params["axes"])

    def apply_to_mask(self, mask, **params):
        # Mask has no dimension channel
        return np.flip(mask, axis=[item - 1 for item in params["axes"]])

Filip Lux's avatar
Filip Lux committed
    def apply_to_keypoints(self, keypoints, keep_all=False, **params):
        return F.flip_keypoints(keypoints,
                                axes=params['axes'],
                                img_shape=params['img_shape'])

Lucia Hradecká's avatar
Lucia Hradecká committed
    def get_params(self, **data):
        
Filip Lux's avatar
Filip Lux committed
        to_choose = [1, 2, 3] if self.axes is None else self.axes
        axes = random.sample(to_choose, random.randint(0, len(to_choose)))
Filip Lux's avatar
Filip Lux committed
        img_shape = np.array(data['image'].shape[1:4])
        return {"axes": axes,
                "img_shape": img_shape}
Lucia Hradecká's avatar
Lucia Hradecká committed

    def __repr__(self):
        return f'Flip({self.axes}, {self.always_apply}, {self.p})'


class CenterCrop(DualTransform):
    """Crops the central region of the input of given size.
          
        Unlike ``CenterCrop`` from `Albumentations`, this transform pads the input in dimensions
        where the input is smaller than the ``shape`` with ``numpy.pad``. The ``border_mode``, ``ival`` and ``mval``
        arguments are forwarded to ``numpy.pad`` if padding is necessary. More details at:
        https://numpy.org/doc/stable/reference/generated/numpy.pad.html.

        Args:
            shape (Tuple[int]): The desired shape of input.

                Must be either of: ``[Z, Y, X]`` or ``[Z, Y, X, T]``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            ival (float | Sequence, optional): Values of `image` voxels outside of the `image` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            mval (float | Sequence, optional): Values of `mask` voxels outside of the `mask` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, shape: Tuple[int], border_mode: str = "reflect", ival: Union[Sequence[float], float] = (0, 0),
                 mval: Union[Sequence[float], float] = (0, 0), ignore_index: Union[float, None] = None,
                 always_apply: bool = False, p: float = 1.0):
        super().__init__(always_apply, p)
Filip Lux's avatar
Filip Lux committed
        self.output_shape = np.asarray(shape, dtype=np.intc)  # TODO: make it len 3
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival = ival
        self.mval = mval
        
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
Filip Lux's avatar
Filip Lux committed
        return F.crop(img,
                      crop_shape=self.output_shape,
                      crop_position=params['crop_position'],
                      pad_dims=params['pad_dims'],
                      border_mode=self.mask_mode, cval=self.mval, mask=False)
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_mask(self, mask, **params):
Filip Lux's avatar
Filip Lux committed
        return F.crop(mask,
                      crop_shape=self.output_shape,
                      crop_position=params['crop_position'],
                      pad_dims=params['pad_dims'],
                      border_mode=self.mask_mode, cval=self.mval, mask=True)

Filip Lux's avatar
Filip Lux committed
    def apply_to_keypoints(self, keypoints, keep_all=False, **params):
        return F.crop_keypoints(keypoints,
                                crop_shape=self.output_shape,
                                crop_position=params['crop_position'],
                                pad_dims=params['pad_dims'],
                                keep_all=keep_all)

Filip Lux's avatar
Filip Lux committed
    def get_params(self, **data):
        # get crop coordinates, position of the corner closest to the image origin
        img_spatial_shape = np.array(data['image'].shape[1:4])
        position: TypeSpatialCoordinate = (img_spatial_shape - self.output_shape) // 2
        position = np.maximum(position, 0).astype(int)
        pad_dims = F.get_pad_dims(img_spatial_shape, self.output_shape)

        return {'crop_position': position,
                'pad_dims': pad_dims}
Lucia Hradecká's avatar
Lucia Hradecká committed

    def __repr__(self):
Filip Lux's avatar
Filip Lux committed
        return f'CenterCrop({self.output_shape}, {self.always_apply}, {self.p})'
Lucia Hradecká's avatar
Lucia Hradecká committed


class RandomCrop(DualTransform):
    """Randomly crops a region of given size from the input.

        Unlike ``RandomCrop`` from `Albumentations`, this transform pads the input in dimensions
        where the input is smaller than the ``shape`` with ``numpy.pad``. The ``border_mode``, ``ival`` and ``mval``
        arguments are forwarded to ``numpy.pad`` if padding is necessary. More details at:
        https://numpy.org/doc/stable/reference/generated/numpy.pad.html.

        Args:
            shape (Tuple[int]): The desired shape of input.

                Must be either of: ``[Z, Y, X]`` or ``[Z, Y, X, T]``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            ival (float | Sequence, optional): Values of `image` voxels outside of the `image` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            mval (float | Sequence, optional): Values of `mask` voxels outside of the `mask` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, shape: tuple, border_mode: str = "reflect", ival: Union[Sequence[float], float] = (0, 0),
                 mval: Union[Sequence[float], float] = (0, 0), ignore_index: Union[float, None] = None,
                 always_apply: bool = False, p: float = 1.0):
        super().__init__(always_apply, p)
Filip Lux's avatar
Filip Lux committed
        self.output_shape = np.asarray(shape, dtype=np.intc)
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival = ival
        self.mval = mval

        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

Filip Lux's avatar
Filip Lux committed
    def apply(self, img, **params):
        return F.crop(img,
                      crop_shape=self.output_shape,
                      crop_position=params['crop_position'],
                      pad_dims=params['pad_dims'],
                      border_mode=self.mask_mode, cval=self.mval, mask=False)
Lucia Hradecká's avatar
Lucia Hradecká committed

Filip Lux's avatar
Filip Lux committed
    def apply_to_mask(self, mask, **params):
        return F.crop(mask,
                      crop_shape=self.output_shape,
                      crop_position=params['crop_position'],
                      pad_dims=params['pad_dims'],
                      border_mode=self.mask_mode, cval=self.mval, mask=True)
Filip Lux's avatar
Filip Lux committed
    def apply_to_keypoints(self, keypoints, keep_all=False, **params):
        return F.crop_keypoints(keypoints,
                                crop_shape=self.output_shape,
                                crop_position=params['crop_position'],
                                pad_dims=params['pad_dims'],
                                keep_all=keep_all)

Lucia Hradecká's avatar
Lucia Hradecká committed
    def get_params(self, **data):
Filip Lux's avatar
Filip Lux committed
        # get crop coordinates, position of the corner closest to the image origin
        img_spatial_shape = np.array(data['image'].shape[1:4])
        ranges: TypeSpatialShape = np.maximum(img_spatial_shape - self.output_shape, 0)
        position = np.array([random.randint(0, r) for r in ranges])
        pad_dims = F.get_pad_dims(img_spatial_shape, self.output_shape)
        return {'crop_position': position,
                'pad_dims': pad_dims}
Lucia Hradecká's avatar
Lucia Hradecká committed

    def __repr__(self):
Filip Lux's avatar
Filip Lux committed
        return f'RandomCrop({self.output_shape}, {self.always_apply}, {self.p})'
Lucia Hradecká's avatar
Lucia Hradecká committed


class RandomAffineTransform(DualTransform):
    """Affine transformation of the input image with randomly chosen parameters.

        Args:
            angle_limit (Tuple[float] | float, optional): Intervals in degrees from which angles of
                rotation for the spatial axes are chosen.

Filip Lux's avatar
Filip Lux committed
                Must be either of: ``A``, ``(A1, A2)``, ``(A1, A2, A3)``, or ``(A_Z1, A_Z2, A_Y1, A_Y2, A_X1, A_X2)``.
Lucia Hradecká's avatar
Lucia Hradecká committed

                If a float, equivalent to ``(-A, A, -A, A, -A, A)``.

                If a tuple with 2 items, equivalent to ``(A1, A2, A1, A2, A1, A2)``.

Filip Lux's avatar
Filip Lux committed
                If a tuple with 3 items, equivalent to ``(-A1, A1, -A2, A2, -A3, A3)``.

Lucia Hradecká's avatar
Lucia Hradecká committed
                If a tuple with 6 items, angle of rotation is randomly chosen from an interval [A_a1, A_a2] for each
                spatial axis.

                Defaults to ``(15, 15, 15)``.
Filip Lux's avatar
Filip Lux committed
            translation_limit (Tuple[float] | float | None, optional): Intervals from which the translation parameters
Lucia Hradecká's avatar
Lucia Hradecká committed
                for the spatial axes are chosen.

Filip Lux's avatar
Filip Lux committed
                Must be either of: ``T``, ``(T1, T2)``, ``(T1, T2, T3)``, or ``(T_Z1, T_Z2, T_Y1, T_Y2, T_X1, T_X2)``.
Lucia Hradecká's avatar
Lucia Hradecká committed

                If a float, equivalent to ``(-T, T, -T, T, -T, T)``.

                If a tuple with 2 items, equivalent to ``(T1, T2, T1, T2, T1, T2)``.

Filip Lux's avatar
Filip Lux committed
                If a tuple with 3 items, equivalent to ``(-T1, T1, -T2, T2, -T3, T3)``.

Lucia Hradecká's avatar
Lucia Hradecká committed
                If a tuple with 6 items, the translation parameter is randomly chosen from an interval [T_a1, T_a2] for
                each spatial axis.

                Defaults to ``(0, 0, 0)``.
            scaling_limit (Tuple[float] | float, optional): Intervals from which the scales for the spatial axes are chosen.

Filip Lux's avatar
Filip Lux committed
                Must be either of: ``S``, ``(S1, S2)``, ``(S1, S2, S3)``, or ``(S_Z1, S_Z2, S_Y1, S_Y2, S_X1, S_X2)``.
Lucia Hradecká's avatar
Lucia Hradecká committed

Filip Lux's avatar
Filip Lux committed
                If a float, equivalent to ``(1 - S, 1 + S, 1 - S, 1 + S, 1 - S, 1 + S)``.
Lucia Hradecká's avatar
Lucia Hradecká committed

                If a tuple with 2 items, equivalent to ``(S1, S2, S1, S2, S1, S2)``.

Filip Lux's avatar
Filip Lux committed
                If a tuple with 3 items, equivalent to ``(1 - S1, 1 + S1, 1 - S2, 1 + S2, 1 - S3, 1 + S3)``.

Lucia Hradecká's avatar
Lucia Hradecká committed
                If a tuple with 6 items, the scale is randomly chosen from an interval [S_a1, S_a2] for
                each spatial axis.

                Defaults to ``(0.2, 0.2, 0.2)``.
            spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.

                Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.

                If ``None``, equivalent to ``(1, 1, 1)``.

                If a float ``S``, equivalent to ``(S, S, S)``.

                Otherwise, a scale for each spatial dimension must be given.

                Defaults to ``None``.
            change_to_isotropic (bool, optional): Change data from anisotropic to isotropic.

                Defaults to ``False``.
            interpolation (str, optional): ITK interpolation type for image data.
Lucia Hradecká's avatar
Lucia Hradecká committed

                One of ``linear``, ``nearest``, ``bspline``, ``gaussian``.
                There is always 'nearest' interpolation for labeled masks.

                Defaults to ``linear``.
Lucia Hradecká's avatar
Lucia Hradecká committed
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'constant'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
Filip Lux's avatar
Filip Lux committed
    def __init__(self, angle_limit: Union[float, TypePairFloat, TypeTripletFloat, TypeSextetFloat] = (15., 15., 15.),
                 translation_limit: Union[float, TypePairFloat, TypeTripletFloat, TypeSextetFloat] = (0., 0., 0.),
                 scaling_limit: Union[float, TypePairFloat, TypeTripletFloat, TypeSextetFloat] = (0.2, 0.2, 0.2),
Lucia Hradecká's avatar
Lucia Hradecká committed
                 spacing: Union[float, TypeTripletFloat] = None,
                 change_to_isotropic: bool = False,
                 interpolation: str = 'linear',
Lucia Hradecká's avatar
Lucia Hradecká committed
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.angle_limit: TypeSextetFloat = parse_limits(angle_limit, identity_element=0)
        self.translation_limit: TypeSextetFloat = parse_limits(translation_limit, identity_element=0)
        self.scaling_limit: TypeSextetFloat = parse_limits(scaling_limit, identity_element=1)
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1)
        self.interpolation: int = parse_itk_interpolation(interpolation)
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.border_mode = border_mode                 # not used
        self.mask_mode = border_mode                   # not used
        self.ival = ival
        self.mval = mval
        self.keep_scale = not change_to_isotropic

        if ignore_index is not None:
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.affine(img,
                        scales=params["scale"],
                        degrees=params["angles"],
                        translation=params["translation"],
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = parse_itk_interpolation('nearest')   # refers to 'sitkNearestNeighbor'
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=params["scale"],
                        degrees=params["angles"],
                        translation=params["translation"],
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_float_mask(self, mask, **params):
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=params["scale"],
                        degrees=params["angles"],
                        translation=params["translation"],
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_keypoints(self, keypoints, **params):
        return F.affine_keypoints(keypoints,
                                  scales=params["scale"],
                                  degrees=params["angles"],
                                  translation=params["translation"],
                                  spacing=self.spacing,
                                  domain_limit=params['domain_limit'])

Lucia Hradecká's avatar
Lucia Hradecká committed
    def get_params(self, **data):

        # set parameters of the transform
        scales = sample_range_uniform(self.scaling_limit)
        angles = sample_range_uniform(self.angle_limit)
        translation = sample_range_uniform(self.translation_limit)
        domain_limit = get_spatio_temporal_domain_limit(data)
Lucia Hradecká's avatar
Lucia Hradecká committed

        return {
            "scale": scales,
            "angles": angles,
            "translation": translation,
            "domain_limit": domain_limit
Lucia Hradecká's avatar
Lucia Hradecká committed
        }


class AffineTransform(DualTransform):
    """Affine transformation of the input image with given parameters.

        Args:
            angles (Tuple[float], optional): Angles of rotation for the spatial axes.

                Must be: ``(A_Z, A_Y, A_X)``.

                Defaults to ``(0, 0, 0)``.
            translation (Tuple[float], optional): Translation vector for the spatial axes.

                Must be: ``(T_Z, T_Y, T_X)``.

                Defaults to ``(0, 0, 0)``.
            scale (Tuple[float], optional): Scales for the spatial axes.

                Must be: ``(S_Z, S_Y, S_X)``.

                Defaults to ``(1, 1, 1)``.
            spacing (Tuple[float, float, float], optional): Voxel spacing for individual spatial dimensions.

                Must be: ``(S1, S2, S3)`` (a scale for each spatial dimension must be given).

                Defaults to ``(1, 1, 1)``.
            change_to_isotropic (bool, optional): Change data from anisotropic to isotropic.

                Defaults to ``False``.
            interpolation (str, optional): ITK interpolation type for image data.
Lucia Hradecká's avatar
Lucia Hradecká committed

                One of ``linear``, ``nearest``, ``bspline``, ``gaussian``.
                There is always 'nearest' interpolation for labeled masks.

                Defaults to ``linear``.
Lucia Hradecká's avatar
Lucia Hradecká committed
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'constant'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.