Newer
Older
Gareth Tribello
committed
/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Gareth Tribello
committed
(see the PEOPLE file at the root of the distribution for a list of names)
Gareth Tribello
committed
This file is part of plumed, version 2.
plumed is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
plumed is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with plumed. If not, see <http://www.gnu.org/licenses/>.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
#include "LandmarkSelectionBase.h"
#include "core/ActionRegister.h"
#include "tools/Random.h"
//+PLUMEDOC LANDMARKS LANDMARK_SELECT_FPS
Select a set of landmarks using farthest point sampling.
\par Examples
*/
//+ENDPLUMEDOC
Gareth Tribello
committed
namespace PLMD {
namespace analysis {
class FarthestPointSampling : public LandmarkSelectionBase {
private:
unsigned seed;
public:
static void registerKeywords( Keywords& keys );
explicit FarthestPointSampling( const ActionOptions& ao );
Gareth Tribello
committed
void selectLandmarks();
};
PLUMED_REGISTER_ACTION(FarthestPointSampling,"LANDMARK_SELECT_FPS")
void FarthestPointSampling::registerKeywords( Keywords& keys ) {
Gareth Tribello
committed
LandmarkSelectionBase::registerKeywords(keys);
keys.add("compulsory","SEED","1234","a random number seed");
}
FarthestPointSampling::FarthestPointSampling( const ActionOptions& ao ):
Gareth Tribello
committed
{
if( !dissimilaritiesWereSet() ) error("dissimilarities have not been calcualted in input action");
parse("SEED",seed);
}
void FarthestPointSampling::selectLandmarks() {
Gareth Tribello
committed
std::vector<unsigned> landmarks( getNumberOfDataPoints() );
// Select first point at random
Random random; random.setSeed(-seed); double rand=random.RandU01();
landmarks[0] = std::floor( my_input_data->getNumberOfDataPoints()*rand );
Gareth Tribello
committed
selectFrame( landmarks[0] );
// Now find distance to all other points (N.B. We can use squared distances here for speed)
Matrix<double> distances( getNumberOfDataPoints(), my_input_data->getNumberOfDataPoints() );
for(unsigned i=0; i<my_input_data->getNumberOfDataPoints(); ++i) distances(0,i) = my_input_data->getDissimilarity( landmarks[0], i );
Gareth Tribello
committed
// Now find all other landmarks
for(unsigned i=1; i<getNumberOfDataPoints(); ++i) {
// Find point that has the largest minimum distance from the landmarks selected thus far
double maxd=0;
for(unsigned j=0; j<my_input_data->getNumberOfDataPoints(); ++j) {
double mind=distances(0,j);
for(unsigned k=1; k<i; ++k) {
if( distances(k,j)<mind ) { mind=distances(k,j); }
Gareth Tribello
committed
}
if( mind>maxd ) { maxd=mind; landmarks[i]=j; }
}
selectFrame( landmarks[i] );
for(unsigned k=0; k<my_input_data->getNumberOfDataPoints(); ++k) distances(i,k) = my_input_data->getDissimilarity( landmarks[i], k );
}