Skip to content
Snippets Groups Projects
transforms.py 67 KiB
Newer Older
Lucia Hradecká's avatar
Lucia Hradecká committed
# ============================================================================================= #
#  Author:       Pavel Iakubovskii, ZFTurbo, ashawkey, Dominik Müller,                          #
#                Samuel Šuľan, Lucia Hradecká, Filip Lux                                        #
#  Copyright:    albumentations:    : https://github.com/albumentations-team                    #
#                Pavel Iakubovskii  : https://github.com/qubvel                                 #
#                ZFTurbo            : https://github.com/ZFTurbo                                #
#                ashawkey           : https://github.com/ashawkey                               #
#                Dominik Müller     : https://github.com/muellerdo                              #
#                Lucia Hradecká     : lucia.d.hradecka@gmail.com                                #
#                Filip Lux          : lux.filip@gmail.com                                       #
#                                                                                               #
#  Volumentations History:                                                                      #
#       - Original:                 https://github.com/albumentations-team/albumentations       #
#       - 3D Conversion:            https://github.com/ashawkey/volumentations                  #
#       - Continued Development:    https://github.com/ZFTurbo/volumentations                   #
#       - Enhancements:             https://github.com/qubvel/volumentations                    #
#       - Further Enhancements:     https://github.com/muellerdo/volumentations                 #
#       - Biomedical Enhancements:  https://gitlab.fi.muni.cz/cbia/bio-volumentations           #
#                                                                                               #
#  MIT License.                                                                                 #
#                                                                                               #
#  Permission is hereby granted, free of charge, to any person obtaining a copy                 #
#  of this software and associated documentation files (the "Software"), to deal                #
#  in the Software without restriction, including without limitation the rights                 #
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell                    #
#  copies of the Software, and to permit persons to whom the Software is                        #
#  furnished to do so, subject to the following conditions:                                     #
#                                                                                               #
#  The above copyright notice and this permission notice shall be included in all               #
#  copies or substantial portions of the Software.                                              #
#                                                                                               #
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR                   #
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,                     #
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE                  #
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER                       #
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,                #
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE                #
#  SOFTWARE.                                                                                    #
# ============================================================================================= #

import random
import numpy as np
from ..core.transforms_interface import DualTransform, ImageOnlyTransform
from ..augmentations import functional as F
from ..augmentations.spatial_funcional import get_affine_transform
Lucia Hradecká's avatar
Lucia Hradecká committed
from ..random_utils import uniform, sample_range_uniform
from typing import List, Sequence, Tuple, Union
from ..biovol_typing import TypeSextetFloat, TypeTripletFloat, TypePairFloat, TypeSpatioTemporalCoordinate,\
Filip Lux's avatar
Filip Lux committed
    TypeSextetInt, TypeSpatialCoordinate, TypeSpatialShape
from .utils import parse_limits, parse_coefs, parse_pads, to_tuple, validate_bbox, get_spatio_temporal_domain_limit,\
    to_spatio_temporal
Lucia Hradecká's avatar
Lucia Hradecká committed


# TODO anti_aliasing_downsample keep parameter or remove?
class Resize(DualTransform):
    """Resize input to the given shape.

        Internally, the ``skimage.transform.resize`` function is used.
        The ``interpolation``, ``border_mode``, ``ival``, ``mval``,
        and ``anti_aliasing_downsample`` arguments are forwarded to it. More details at:
        https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.resize.

        Args:
            shape (tuple of ints): The desired image shape.

                Must be of either of: ``(Z, Y, X)`` or ``(Z, Y, X, T)``.

                The unspecified dimensions (C and possibly T) are not affected.
            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.
            
                Defaults to ``0``.
            anti_aliasing_downsample (bool, optional): Controls if the Gaussian filter should be applied before
                downsampling. Recommended. 
                
                Defaults to ``True``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.
                
                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, shape: tuple, interpolation: int = 1, border_mode: str = 'reflect', ival: float = 0,
                 mval: float = 0, anti_aliasing_downsample: bool = True, ignore_index: Union[float, None] = None,
                 always_apply: bool = False, p: float = 1):
        
        super().__init__(always_apply, p)
        self.shape: TypeSpatioTemporalCoordinate = to_spatio_temporal(shape)
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.interpolation = interpolation
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival = ival
        self.mval = mval
        self.anti_aliasing_downsample = anti_aliasing_downsample
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.resize(img, input_new_shape=self.shape, interpolation=self.interpolation,
                        border_mode=self.border_mode, cval=self.ival,
                        anti_aliasing_downsample=self.anti_aliasing_downsample)

    def apply_to_mask(self, mask, **params):
        return F.resize(mask, input_new_shape=self.shape, interpolation=0,
                        border_mode=self.mask_mode, cval=self.mval, anti_aliasing_downsample=False,
                        mask=True)

    def apply_to_float_mask(self, mask, **params):
        return F.resize(mask, input_new_shape=self.shape, interpolation=self.interpolation,
                        border_mode=self.mask_mode, cval=self.mval, anti_aliasing_downsample=False,
                        mask=True)

    def apply_to_keypoints(self, keypoints, **params):
        return F.resize_keypoints(keypoints,
                                  domain_limit=params['domain_limit'],
                                  new_shape=self.shape)

    """
    def apply_to_bboxes(self, bboxes, **params):
        for bbox in bboxes:
            new_bbox = F.resize_keypoints(bbox,
                                          input_new_shape=self.shape,
                                          original_shape=params['original_shape'],
                                          keep_all=True)

            if validate_bbox(bbox, new_bbox, min_overlay_ratio):
                res.append(new_bbox)

        return res
    """

    def get_params(self, **data):

        # read shape of the original image
        domain_limit: TypeSpatioTemporalCoordinate = get_spatio_temporal_domain_limit(data)

        return {
            "domain_limit": domain_limit,
        }
Lucia Hradecká's avatar
Lucia Hradecká committed
        
    def __repr__(self):
        return f'Resize({self.shape}, {self.interpolation}, {self.border_mode} , {self.ival}, {self.mval},' \
               f'{self.anti_aliasing_downsample},   {self.always_apply}, {self.p})'


class Scale(DualTransform):
    """Rescale input by the given scale.

        Args:
            scales (float|List[float], optional): Value by which the input should be scaled.

                Must be either of: ``S``, ``[S_Z, S_Y, S_X]``, or ``[S_Z, S_Y, S_X, S_T]``.

                If a float, then all spatial dimensions are scaled by it (equivalent to ``[S, S, S]``).

                The unspecified dimensions (C and possibly T) are not affected.

                Defaults to ``1``.
            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.
            spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.

                Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.

                If ``None``, equivalent to ``(1, 1, 1)``.

                If a float ``S``, equivalent to ``(S, S, S)``.

                Otherwise, a scale for each spatial dimension must be given.

                Defaults to ``None``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'constant'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
Lucia Hradecká's avatar
Lucia Hradecká committed
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, scales: Union[float, TypeTripletFloat] = 1,
                 interpolation: int = 1, spacing: Union[float, TypeTripletFloat] = None,
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 1):
        super().__init__(always_apply, p)
        self.scale = parse_coefs(scales, identity_element=1.)
        self.interpolation: int = interpolation
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1.)
        self.border_mode = border_mode              # not implemented
        self.mask_mode = border_mode                # not implemented
        self.ival = ival
        self.mval = mval
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.affine(img,
                        scales=self.scale,
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = 0   # refers to 'sitkNearestNeighbor'
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=self.scale,
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_float_mask(self, mask, **params):
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=self.scale,
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
    def apply_to_keypoints(self, keypoints, **params):
        return F.affine_keypoints(keypoints,
                                  scales=self.scale,
                                  spacing = self.spacing,
                                  domain_limit=params['domain_limit'])

    """
    def apply_to_bboxes(self, bboxes, **params):
        for bbox in bboxes:
            new_bbox = F.affine_keypoints(bbox,
                                          scales=self.scale,
                                          domain_limit=params['domain_limit'],
                                          spacing = self.spacing,
                                          keep_all=True)

            if validate_bbox(bbox, new_bbox):
                res.append(new_bbox)

        return res
    """

    def get_params(self, **data):
        domain_limit: TypeSpatioTemporalCoordinate = get_spatio_temporal_domain_limit(data)
        return {'domain_limit': domain_limit}

Lucia Hradecká's avatar
Lucia Hradecká committed
    def __repr__(self):
        return f'Scale({self.scale}, {self.interpolation}, {self.border_mode}, {self.ival}, {self.mval},' \
               f'{self.always_apply}, {self.p})'


# TODO cannot rescale T dimension
class RandomScale(DualTransform):
    """Randomly rescale input.

        Args:
            scaling_limit (float | Tuple[float] | List[Tuple[float]], optional): Limits of scaling factors.

                Must be either of: ``S``, ``(S1, S2)``, ``(S_Z, S_Y, S_X)``, or ``(S_Z1, S_Z2, S_Y1, S_Y2, S_X1, S_X2)``.

                If a float ``S``, then all spatial dimensions are scaled by a random number drawn uniformly from
                the interval [1-S, 1+S] (equivalent to inputting ``(1-S, 1+S, 1-S, 1+S, 1-S, 1+S)``).

                If a tuple of 2 floats, then all spatial dimensions are scaled by a random number drawn uniformly
                from the interval [S1, S2] (equivalent to inputting ``(S1, S2, S1, S2, S1, S2)``).

                If a tuple of 3 floats, then an interval [1-S_a, 1+S_a] is constructed for each spatial
                dimension and the scale is randomly drawn from it
                (equivalent to inputting ``(1-S_Z, 1+S_Z, 1-S_Y, 1+S_Y, 1-S_X, 1+S_X)``).

                If a tuple of 6 floats, the scales for individual spatial dimensions are randomly drawn from the
                respective intervals [S_Z1, S_Z2], [S_Y1, S_Y2], [S_X1, S_X2].

                The unspecified dimensions (C and T) are not affected.

                Defaults to ``(0.9, 1.1)``.

            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.

            spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.

                Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.

                If ``None``, equivalent to ``(1, 1, 1)``.

                If a float ``S``, equivalent to ``(S, S, S)``.

                Otherwise, a scale for each spatial dimension must be given.

                Defaults to ``None``.

            border_mode (str, optional): Values outside image domain are filled according to the mode.

                Defaults to ``'constant'``.

            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.

            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.

            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.

            always_apply (bool, optional): Always apply this transformation in composition.

                Defaults to ``False``.

            p (float, optional): Chance of applying this transformation in composition.

                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """      
    def __init__(self, scaling_limit: Union[float, TypePairFloat, TypeTripletFloat, TypeSextetFloat] = (0.9, 1.1),
                 interpolation: int = 1, spacing: Union[float, TypeTripletFloat] = None,
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.scaling_limit: TypeSextetFloat = parse_limits(scaling_limit)
        self.interpolation: int = interpolation
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1.)
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival: float = ival
        self.mval: float = mval
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def get_params(self, **data):
        # set parameters of the transform
        domain_limit: TypeSpatioTemporalCoordinate = get_spatio_temporal_domain_limit(data)
Lucia Hradecká's avatar
Lucia Hradecká committed
        scale = sample_range_uniform(self.scaling_limit)

        return {
            "domain_limit": domain_limit,
Lucia Hradecká's avatar
Lucia Hradecká committed
            "scale": scale,
        }

    def apply(self, img, **params):
        return F.affine(img,
                        scales=params["scale"],
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = 0   # refers to 'sitkNearestNeighbor'
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=params["scale"],
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_float_mask(self, mask, **params):
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=params["scale"],
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
    def apply_to_keypoints(self, keypoints, **params):
        return F.affine_keypoints(keypoints,
                                  scales=params["scale"],
                                  spacing=self.spacing,
                                  domain_limit=params['domain_limit'])

Lucia Hradecká's avatar
Lucia Hradecká committed
    def __repr__(self):
        return f'RandomScale({self.scaling_limit}, {self.interpolation}, {self.always_apply}, {self.p})'


class RandomRotate90(DualTransform):
    """Rotation of input by 0, 90, 180, or 270 degrees around the specified spatial axes.

        Args:
            axes (List[int], optional): List of axes around which the input is rotated. Recognised axis symbols are
                ``1`` for Z, ``2`` for Y, and ``3`` for X. A single axis can occur multiple times in the list.
                If ``shuffle_axis = False``, the order of axes determines the order of transformations.

                Defaults to ``[1, 2, 3]``.
            shuffle_axis (bool, optional): If set to ``True``, the order of rotations is random.

                Defaults to ``False``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, axes: List[int] = None, shuffle_axis: bool = False,
                 always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.axes = axes
        self.shuffle_axis = shuffle_axis

    def apply(self, img, **params):
        for factor, axes in zip(params["factor"], params["rotation_around"]):
            img = np.rot90(img, factor, axes=axes)
        return img

    def apply_to_mask(self, mask, **params):
        for i in range(len(params["rotation_around"])):
            mask = np.rot90(mask, params["factor"][i], axes=(
                params["rotation_around"][i][0] - 1, params["rotation_around"][i][1] - 1))
        return mask

    def get_params(self, **data):

        # Rotate by all axis by default
        if self.axes is None:
            self.axes = [1, 2, 3]

        # Create all combinations for rotating
        axes_to_rotate = {1: (2, 3), 2: (1, 3), 3: (1, 2)}
        rotation_around = []
        for i in self.axes:
            if i in axes_to_rotate.keys():
                rotation_around.append(axes_to_rotate[i])

        # shuffle order of axis
        if self.shuffle_axis:
            random.shuffle(rotation_around)

        # choose angle to rotate
        factor = [random.randint(0, 3) for _ in range(len(rotation_around))]
        return {"factor": factor,
                "rotation_around": rotation_around}

    def __repr__(self):
        return f'RandomRotate90({self.axes}, {self.always_apply}, {self.p})'


class Flip(DualTransform):
    """Flip input around the specified spatial axes.

        Args:
            axes (List[int], optional): List of axes around which is flip done. Recognised axis symbols are
                ``1`` for Z, ``2`` for Y, and ``3`` for X.

                Defaults to ``[1,2,3]``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, axes: List[int] = None, always_apply=False, p=1):
        super().__init__(always_apply, p)
        self.axes = axes

    def apply(self, img, **params):
        return np.flip(img, params["axes"])

    def apply_to_mask(self, mask, **params):
        # Mask has no dimension channel
        return np.flip(mask, axis=[item - 1 for item in params["axes"]])

Filip Lux's avatar
Filip Lux committed
    def apply_to_keypoints(self, keypoints, keep_all=False, **params):
        return F.flip_keypoints(keypoints,
                                axes=params['axes'],
                                img_shape=params['img_shape'])

Lucia Hradecká's avatar
Lucia Hradecká committed
    def get_params(self, **data):
Filip Lux's avatar
Filip Lux committed
        axes = [1, 2, 3] if self.axes is None else self.axes
        img_shape = np.array(data['image'].shape[1:4])
        return {"axes": axes,
                "img_shape": img_shape}
Lucia Hradecká's avatar
Lucia Hradecká committed

    def __repr__(self):
        return f'Flip({self.axes}, {self.always_apply}, {self.p})'


# TODO include possibility to pick empty combination = no flipping
class RandomFlip(DualTransform):
    """Flip input around a set of axes randomly chosen from the input list of axis combinations.

        Args:
Filip Lux's avatar
Filip Lux committed
            axes_to_choose (List[Tuple[int]] or None, optional): List of axis indices from which one option
Lucia Hradecká's avatar
Lucia Hradecká committed
                is randomly chosen. Recognised axis symbols are ``1`` for Z, ``2`` for Y, and ``3`` for X.
                The image will be flipped around all axes in the chosen combination.

                If ``None``, a random subset of spatial axes is chosen, corresponding to inputting
Filip Lux's avatar
Filip Lux committed
                ``[(,), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]``.
Lucia Hradecká's avatar
Lucia Hradecká committed

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, axes_to_choose: Union[None, List[Tuple[int]]] = None, always_apply=False, p=0.5):
        super().__init__(always_apply, p)
Filip Lux's avatar
Filip Lux committed

Filip Lux's avatar
Filip Lux committed
        # TODO: check if input value `axes_to_choice` valid
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.axes = axes_to_choose

    def apply(self, img, **params):
        return np.flip(img, params["axes"])

    def apply_to_mask(self, mask, **params):
        # Mask has no dimension channel
        return np.flip(mask, axis=[item - 1 for item in params["axes"]])

Filip Lux's avatar
Filip Lux committed
    def apply_to_keypoints(self, keypoints, keep_all=False, **params):
        return F.flip_keypoints(keypoints,
                                axes=params['axes'],
                                img_shape=params['img_shape'])

Lucia Hradecká's avatar
Lucia Hradecká committed
    def get_params(self, **data):
        
Filip Lux's avatar
Filip Lux committed
        to_choose = [1, 2, 3] if self.axes is None else self.axes
        axes = random.sample(to_choose, random.randint(0, len(to_choose)))
Filip Lux's avatar
Filip Lux committed
        img_shape = np.array(data['image'].shape[1:4])
        return {"axes": axes,
                "img_shape": img_shape}
Lucia Hradecká's avatar
Lucia Hradecká committed

    def __repr__(self):
        return f'Flip({self.axes}, {self.always_apply}, {self.p})'


class CenterCrop(DualTransform):
    """Crops the central region of the input of given size.
          
        Unlike ``CenterCrop`` from `Albumentations`, this transform pads the input in dimensions
        where the input is smaller than the ``shape`` with ``numpy.pad``. The ``border_mode``, ``ival`` and ``mval``
        arguments are forwarded to ``numpy.pad`` if padding is necessary. More details at:
        https://numpy.org/doc/stable/reference/generated/numpy.pad.html.

        Args:
            shape (Tuple[int]): The desired shape of input.

                Must be either of: ``[Z, Y, X]`` or ``[Z, Y, X, T]``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            ival (float | Sequence, optional): Values of `image` voxels outside of the `image` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            mval (float | Sequence, optional): Values of `mask` voxels outside of the `mask` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, shape: Tuple[int], border_mode: str = "reflect", ival: Union[Sequence[float], float] = (0, 0),
                 mval: Union[Sequence[float], float] = (0, 0), ignore_index: Union[float, None] = None,
                 always_apply: bool = False, p: float = 1.0):
        super().__init__(always_apply, p)
Filip Lux's avatar
Filip Lux committed
        self.output_shape = np.asarray(shape, dtype=np.intc)  # TODO: make it len 3
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival = ival
        self.mval = mval
        
        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
Filip Lux's avatar
Filip Lux committed
        return F.crop(img,
                      crop_shape=self.output_shape,
                      crop_position=params['crop_position'],
                      pad_dims=params['pad_dims'],
                      border_mode=self.mask_mode, cval=self.mval, mask=False)
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_mask(self, mask, **params):
Filip Lux's avatar
Filip Lux committed
        return F.crop(mask,
                      crop_shape=self.output_shape,
                      crop_position=params['crop_position'],
                      pad_dims=params['pad_dims'],
                      border_mode=self.mask_mode, cval=self.mval, mask=True)

Filip Lux's avatar
Filip Lux committed
    def apply_to_keypoints(self, keypoints, keep_all=False, **params):
        return F.crop_keypoints(keypoints,
                                crop_shape=self.output_shape,
                                crop_position=params['crop_position'],
                                pad_dims=params['pad_dims'],
                                keep_all=keep_all)

Filip Lux's avatar
Filip Lux committed
    def get_params(self, **data):
        # get crop coordinates, position of the corner closest to the image origin
        img_spatial_shape = np.array(data['image'].shape[1:4])
        position: TypeSpatialCoordinate = (img_spatial_shape - self.output_shape) // 2
        position = np.maximum(position, 0).astype(int)
        pad_dims = F.get_pad_dims(img_spatial_shape, self.output_shape)

        return {'crop_position': position,
                'pad_dims': pad_dims}
Lucia Hradecká's avatar
Lucia Hradecká committed

    def __repr__(self):
Filip Lux's avatar
Filip Lux committed
        return f'CenterCrop({self.output_shape}, {self.always_apply}, {self.p})'
Lucia Hradecká's avatar
Lucia Hradecká committed


class RandomCrop(DualTransform):
    """Randomly crops a region of given size from the input.

        Unlike ``RandomCrop`` from `Albumentations`, this transform pads the input in dimensions
        where the input is smaller than the ``shape`` with ``numpy.pad``. The ``border_mode``, ``ival`` and ``mval``
        arguments are forwarded to ``numpy.pad`` if padding is necessary. More details at:
        https://numpy.org/doc/stable/reference/generated/numpy.pad.html.

        Args:
            shape (Tuple[int]): The desired shape of input.

                Must be either of: ``[Z, Y, X]`` or ``[Z, Y, X, T]``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            ival (float | Sequence, optional): Values of `image` voxels outside of the `image` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            mval (float | Sequence, optional): Values of `mask` voxels outside of the `mask` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``(0, 0)``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, shape: tuple, border_mode: str = "reflect", ival: Union[Sequence[float], float] = (0, 0),
                 mval: Union[Sequence[float], float] = (0, 0), ignore_index: Union[float, None] = None,
                 always_apply: bool = False, p: float = 1.0):
        super().__init__(always_apply, p)
Filip Lux's avatar
Filip Lux committed
        self.output_shape = np.asarray(shape, dtype=np.intc)
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.border_mode = border_mode
        self.mask_mode = border_mode
        self.ival = ival
        self.mval = mval

        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

Filip Lux's avatar
Filip Lux committed
    def apply(self, img, **params):
        return F.crop(img,
                      crop_shape=self.output_shape,
                      crop_position=params['crop_position'],
                      pad_dims=params['pad_dims'],
                      border_mode=self.mask_mode, cval=self.mval, mask=False)
Filip Lux's avatar
Filip Lux committed
    def apply_to_mask(self, mask, **params):
        return F.crop(mask,
                      crop_shape=self.output_shape,
                      crop_position=params['crop_position'],
                      pad_dims=params['pad_dims'],
                      border_mode=self.mask_mode, cval=self.mval, mask=True)
Filip Lux's avatar
Filip Lux committed
    def apply_to_keypoints(self, keypoints, keep_all=False, **params):
        return F.crop_keypoints(keypoints,
                                crop_shape=self.output_shape,
                                crop_position=params['crop_position'],
                                pad_dims=params['pad_dims'],
                                keep_all=keep_all)

Lucia Hradecká's avatar
Lucia Hradecká committed
    def get_params(self, **data):
Filip Lux's avatar
Filip Lux committed
        # get crop coordinates, position of the corner closest to the image origin
        img_spatial_shape = np.array(data['image'].shape[1:4])
        ranges: TypeSpatialShape = np.maximum(img_spatial_shape - self.output_shape, 0)
        position = np.array([random.randint(0, r) for r in ranges])
        pad_dims = F.get_pad_dims(img_spatial_shape, self.output_shape)
        return {'crop_position': position,
                'pad_dims': pad_dims}
Lucia Hradecká's avatar
Lucia Hradecká committed

    def __repr__(self):
Filip Lux's avatar
Filip Lux committed
        return f'RandomCrop({self.output_shape}, {self.always_apply}, {self.p})'
Lucia Hradecká's avatar
Lucia Hradecká committed


class RandomAffineTransform(DualTransform):
    """Affine transformation of the input image with randomly chosen parameters.

        Args:
            angle_limit (Tuple[float] | float, optional): Intervals in degrees from which angles of
                rotation for the spatial axes are chosen.

                Must be either of: ``A``, ``(A1, A2)``, or ``(A_Z1, A_Z2, A_Y1, A_Y2, A_X1, A_X2)``.

                If a float, equivalent to ``(-A, A, -A, A, -A, A)``.

                If a tuple with 2 items, equivalent to ``(A1, A2, A1, A2, A1, A2)``.

                If a tuple with 6 items, angle of rotation is randomly chosen from an interval [A_a1, A_a2] for each
                spatial axis.

                Defaults to ``(15, 15, 15)``.
            translation_limit (Tuple[int] | int | None, optional): Intervals from which the translation parameters
                for the spatial axes are chosen.

                Must be either of: ``T``, ``(T1, T2)``, or ``(T_Z1, T_Z2, T_Y1, T_Y2, T_X1, T_X2)``.

                If a float, equivalent to ``(-T, T, -T, T, -T, T)``.

                If a tuple with 2 items, equivalent to ``(T1, T2, T1, T2, T1, T2)``.

                If a tuple with 6 items, the translation parameter is randomly chosen from an interval [T_a1, T_a2] for
                each spatial axis.

                Defaults to ``(0, 0, 0)``.
            scaling_limit (Tuple[float] | float, optional): Intervals from which the scales for the spatial axes are chosen.

                Must be either of: ``S``, ``(S1, S2)``, or ``(S_Z1, S_Z2, S_Y1, S_Y2, S_X1, S_X2)``.

                If a float, equivalent to ``(1-S, 1+S, 1-S, 1+S, 1-S, 1+S)``.

                If a tuple with 2 items, equivalent to ``(S1, S2, S1, S2, S1, S2)``.

                If a tuple with 6 items, the scale is randomly chosen from an interval [S_a1, S_a2] for
                each spatial axis.

                Defaults to ``(0.2, 0.2, 0.2)``.
            spacing (float | Tuple[float, float, float] | None, optional): Voxel spacing for individual spatial dimensions.

                Must be either of: ``S``, ``(S1, S2, S3)``, or ``None``.

                If ``None``, equivalent to ``(1, 1, 1)``.

                If a float ``S``, equivalent to ``(S, S, S)``.

                Otherwise, a scale for each spatial dimension must be given.

                Defaults to ``None``.
            change_to_isotropic (bool, optional): Change data from anisotropic to isotropic.

                Defaults to ``False``.
            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'constant'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
Filip Lux's avatar
Filip Lux committed
    def __init__(self, angle_limit: Union[float, TypePairFloat, TypeSextetFloat] = (15., 15., 15.),
                 translation_limit: Union[float, TypePairFloat, TypeSextetFloat] = (0., 0., 0.),
Lucia Hradecká's avatar
Lucia Hradecká committed
                 scaling_limit: Union[float, TypePairFloat, TypeSextetFloat] = (0.2, 0.2, 0.2),
                 spacing: Union[float, TypeTripletFloat] = None,
                 change_to_isotropic: bool = False,
                 interpolation: int = 1,
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.angle_limit: TypeSextetFloat = parse_limits(angle_limit, identity_element=0)
        self.translation_limit: TypeSextetFloat = parse_limits(translation_limit, identity_element=0)
        self.scaling_limit: TypeSextetFloat = parse_limits(scaling_limit, identity_element=1)
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1)
        self.interpolation: int = interpolation
        self.border_mode = border_mode                 # not used
        self.mask_mode = border_mode                   # not used
        self.ival = ival
        self.mval = mval
        self.keep_scale = not change_to_isotropic

        if ignore_index is not None:
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.affine(img,
                        scales=params["scale"],
                        degrees=params["angles"],
                        translation=params["translation"],
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = 0   # refers to 'sitkNearestNeighbor'
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=params["scale"],
                        degrees=params["angles"],
                        translation=params["translation"],
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_float_mask(self, mask, **params):
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=params["scale"],
                        degrees=params["angles"],
                        translation=params["translation"],
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
    def apply_to_keypoints(self, keypoints, **params):
        return F.affine_keypoints(keypoints,
                                  scales=params["scale"],
                                  degrees=params["angles"],
                                  translation=params["translation"],
                                  spacing=self.spacing,
                                  domain_limit=params['domain_limit'])

Lucia Hradecká's avatar
Lucia Hradecká committed
    def get_params(self, **data):

        # set parameters of the transform
        scales = sample_range_uniform(self.scaling_limit)
        angles = sample_range_uniform(self.angle_limit)
        translation = sample_range_uniform(self.translation_limit)
        domain_limit = get_spatio_temporal_domain_limit(data)
Lucia Hradecká's avatar
Lucia Hradecká committed

        return {
            "scale": scales,
            "angles": angles,
            "translation": translation,
            "domain_limit": domain_limit
Lucia Hradecká's avatar
Lucia Hradecká committed
        }


class AffineTransform(DualTransform):
    """Affine transformation of the input image with given parameters.

        Args:
            angles (Tuple[float], optional): Angles of rotation for the spatial axes.

                Must be: ``(A_Z, A_Y, A_X)``.

                Defaults to ``(0, 0, 0)``.
            translation (Tuple[float], optional): Translation vector for the spatial axes.

                Must be: ``(T_Z, T_Y, T_X)``.

                Defaults to ``(0, 0, 0)``.
            scale (Tuple[float], optional): Scales for the spatial axes.

                Must be: ``(S_Z, S_Y, S_X)``.

                Defaults to ``(1, 1, 1)``.
            spacing (Tuple[float, float, float], optional): Voxel spacing for individual spatial dimensions.

                Must be: ``(S1, S2, S3)`` (a scale for each spatial dimension must be given).

                Defaults to ``(1, 1, 1)``.
            change_to_isotropic (bool, optional): Change data from anisotropic to isotropic.

                Defaults to ``False``.
            interpolation (int, optional): Order of spline interpolation.

                Defaults to ``1``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'constant'``.
            ival (float, optional): Value of `image` voxels outside of the `image` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            mval (float, optional): Value of `mask` voxels outside of the `mask` domain. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, angles: TypeTripletFloat = (0, 0, 0),
                 translation: TypeTripletFloat = (0, 0, 0),
                 scale: TypeTripletFloat = (1, 1, 1),
                 spacing: TypeTripletFloat = (1, 1, 1),
                 change_to_isotropic: bool = False,
                 interpolation: int = 1,
                 border_mode: str = 'constant', ival: float = 0, mval: float = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.angles: TypeTripletFloat = parse_coefs(angles, identity_element=0)
        self.translation: TypeTripletFloat = parse_coefs(translation, identity_element=0)
        self.scale: TypeTripletFloat = parse_coefs(scale, identity_element=1)
        self.spacing: TypeTripletFloat = parse_coefs(spacing, identity_element=1)
        self.interpolation: int = interpolation
        self.border_mode = border_mode                 # not used
        self.mask_mode = border_mode                   # not used
        self.ival = ival
        self.mval = mval
        self.keep_scale = not change_to_isotropic

        if ignore_index is not None:
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.affine(img,
                        scales=self.scale,
                        degrees=self.angles,
                        translation=self.translation,
                        interpolation=self.interpolation,
                        border_mode=self.border_mode,
                        value=self.ival,
                        spacing=self.spacing)

    def apply_to_mask(self, mask, **params):
        interpolation = 0   # refers to 'sitkNearestNeighbor'
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=self.scale,
                        degrees=self.angles,
                        translation=self.translation,
                        interpolation=interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
Lucia Hradecká's avatar
Lucia Hradecká committed

    def apply_to_float_mask(self, mask, **params):
Filip Lux's avatar
Filip Lux committed
        return F.affine(np.expand_dims(mask, 0),
Lucia Hradecká's avatar
Lucia Hradecká committed
                        scales=self.scale,
                        degrees=self.angles,
                        translation=self.translation,
                        interpolation=self.interpolation,
                        border_mode=self.mask_mode,
                        value=self.mval,
Filip Lux's avatar
Filip Lux committed
                        spacing=self.spacing)[0]
    def apply_to_keypoints(self, keypoints, **params):
        return F.affine_keypoints(keypoints,
                                  scales=self.scale,
                                  degrees=self.angles,
                                  translation=self.translation,
                                  spacing=self.spacing,
                                  domain_limit=params['domain_limit'])

    def get_params(self, **data):

        # set parameters of the transform
        domain_limit = get_spatio_temporal_domain_limit(data)

        return {
            "domain_limit": domain_limit
        }


# IMAGE ONLY TRANSFORMS
# TODO potential upgrade : different sigmas for different channels
class GaussianNoise(ImageOnlyTransform):
    """Adds Gaussian noise to the image. The noise is drawn from normal distribution with given parameters.

        Args:
            var_limit (tuple, optional): Variance of normal distribution is randomly chosen from this interval.

                Defaults to ``(0.001, 0.1)``.
            mean (float, optional): Mean of normal distribution.

                Defaults to ``0``.
            always_apply (bool, optional): Always apply this transformation in composition.

                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition.

                Defaults to ``0.5``.

        Targets:
            image
    """

    def __init__(self, var_limit: tuple = (0.001, 0.1), mean: float = 0,
                 always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.var_limit = var_limit
        self.mean = mean

    def apply(self, img, **params):
        return F.gaussian_noise(img, sigma=params['sigma'], mean=self.mean)

    def get_params(self, **params):
        var = uniform(self.var_limit[0], self.var_limit[1])
        sigma = var ** 0.5
        return {"sigma": sigma}

    def __repr__(self):
        return f'GaussianNoise({self.var_limit}, {self.mean}, {self.always_apply}, {self.p})'


class PoissonNoise(ImageOnlyTransform):
    """Adds Poisson noise to the image.

        Args:
            intensity_limit (tuple): Range to sample the expected intensity of Poisson noise.

                Defaults to ``(1, 10)``.
            always_apply (bool, optional): Always apply this transformation in composition.

                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition.

                Defaults to ``0.5``.

        Targets:
            image
    """

    def __init__(self,
                 peak_limit=(0.1, 0.5),
                 always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.peak_limit = peak_limit

    def apply(self, img, **params):
        return F.poisson_noise(img, peak=params['peak'])

    def get_params(self, **params):
        peak = uniform(self.peak_limit[0], self.peak_limit[1])
        return {"peak": peak}

    def __repr__(self):
        return f'PoissonNoise({self.always_apply}, {self.p})'

Lucia Hradecká's avatar
Lucia Hradecká committed
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

# TODO create checks (mean, std, got good shape, and etc.), what if given list but only one channel, and reverse.
class NormalizeMeanStd(ImageOnlyTransform):
    """Normalize image values to have mean 0 and standard deviation 1, given channel-wise means and standard deviations.

        For a single-channel image, the normalization is applied by the formula: :math:`img = (img - mean) / std`.
        If the image contains more channels, then the previous formula is used for each channel separately.

        It is recommended to input dataset-wide means and standard deviations.

        Args:
            mean (float | List[float]): Channel-wise image mean.

                Must be either of: ``M``, ``(M_1, M_2, ..., M_C)``.
            std (float | List[float]): Channel-wise image standard deviation.

                Must be either of: ``S``, ``(S_1, S_2, ..., S_C)``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``True``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image
    """
    def __init__(self, mean: Union[List[float], float], std: Union[List[float], float],
                 always_apply: bool = True, p: float = 1.0):
        super().__init__(always_apply, p)
        self.mean = np.array(mean, dtype=np.float32) 
        self.std = np.array(std, dtype=np.float32) 
        self.denominator = np.reciprocal(self.std, dtype=np.float32)

    def apply(self, image, **params):
        return F.normalize_mean_std(image, self.mean, self.denominator)

    def __repr__(self):
        return f'NormalizeMeanStd({self.mean}, {self.std}, ' \
               f' {self.always_apply}, {self.p})'


class GaussianBlur(ImageOnlyTransform):
    """Performs Gaussian blurring of the image. In case of a multi-channel image, individual channels are blured separately.

        Internally, the ``scipy.ndimage.gaussian_filter`` function is used. The ``border_mode`` and ``cval``
        arguments are forwarded to it. More details at:
        https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html.

        Args:
            sigma (float, Tuple(float), List[Tuple(float) | float] , optional): Gaussian sigma.

                Must be either of: ``S``, ``(S_Z, S_Y, S_X)``, ``(S_Z, S_Y, S_X, S_T)``, ``[S_1, S_2, ..., S_C]``,
                ``[(S_Z1, S_Y1, S_X1), (S_Z2, S_Y2, S_X2), ..., (S_ZC, S_YC, S_XC)]``, or
                ``[(S_Z1, S_Y1, S_X1, S_T1), (S_Z2, S_Y2, S_X2, S_T2), ..., (S_ZC, S_YC, S_XC, S_TC)]``.

                If a float, the spatial dimensions are blurred with the same strength (equivalent to ``(S, S, S)``).

                If a tuple, the sigmas for spatial dimensions and possibly the time dimension must be specified.

                If a list, sigmas for each channel must be specified either as a single number or as a tuple.

                Defaults to ``0.8``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            cval (float, optional): Value to fill past edges of image. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image
    """
    def __init__(self, sigma: Union[float , Tuple[float], List[ Union[Tuple[float], float]]] = 0.8,
                 border_mode: str = "reflect", cval: float = 0,
                 always_apply: bool = False, p: float = 0.5):
        
        super().__init__(always_apply, p)
        self.sigma = sigma
        self.border_mode = border_mode
        self.cval = cval

    def apply(self, img, **params):
        return F.gaussian_blur(img, self.sigma, self.border_mode, self.cval)


class RandomGaussianBlur(ImageOnlyTransform):
    """Performs Gaussian blur on the image with a random strength blurring.
        In case of a multi-channel image, individual channels are blured separately.

        Behaves similarly to GaussianBlur. The Gaussian sigma is randomly drawn from
        the interval [min_sigma, s] for the respective s from ``max_sigma`` for each channel and dimension.

        Internally, the ``scipy.ndimage.gaussian_filter`` function is used. The ``border_mode`` and ``cval``
        arguments are forwarded to it. More details at:
        https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html.

        Args:
            max_sigma (float, Tuple(float), List[Tuple(float) | float] , optional): Maximum Gaussian sigma.

                Must be either of: ``S``, ``(S_Z, S_Y, S_X)``, ``(S_Z, S_Y, S_X, S_T)``, ``[S_1, S_2, ..., S_C]``,
                ``[(S_Z1, S_Y1, S_X1), (S_Z2, S_Y2, S_X2), ..., (S_ZC, S_YC, S_XC)]``, or
                ``[(S_Z1, S_Y1, S_X1, S_T1), (S_Z2, S_Y2, S_X2, S_T2), ..., (S_ZC, S_YC, S_XC, S_TC)]``.

                If a float, the spatial dimensions are blurred equivalently (equivalent to ``(S, S, S)``).

                If a tuple, the sigmas for spatial dimensions and possibly the time dimension must be specified.

                If a list, sigmas for each channel must be specified either as a single number or as a tuple.

                Defaults to ``0.8``.
            min_sigma (float, optional): Minimum Gaussian sigma for all channels and dimensions.

                Defaults to ``0``.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'reflect'``.
            cval (float, optional): Value to fill past edges of image. Only applied when ``border_mode = 'constant'``.

                Defaults to ``0``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image
    """
    def __init__(self, max_sigma: Union[float, TypeTripletFloat] = 0.8,
                 min_sigma: float = 0, border_mode: str = "reflect", cval: float = 0,
                 always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.max_sigma = parse_coefs(max_sigma)
        self.min_sigma = min_sigma
        self.border_mode = border_mode
        self.cval = cval

    def apply(self, img, **params):
        return F.gaussian_blur(img, params["sigma"], self.border_mode, self.cval)

    def get_params(self, **data):
        if isinstance(self.max_sigma, (float, int)):
            sigma = random.uniform(self.min_sigma, self.max_sigma)
        elif isinstance(self.max_sigma, tuple):
            sigma = tuple([random.uniform(self.min_sigma, self.max_sigma[i]) for i in range(len(self.max_sigma))])
        else:
            sigma = []
            for channel in self.max_sigma:
                if isinstance(channel, (float, int)):
                    sigma.append(random.uniform(self.min_sigma, channel))
                else:
                    sigma.append(tuple([random.uniform(self.min_sigma, channel) for i in range(len(channel))]))
        return {"sigma": sigma}


class RandomGamma(ImageOnlyTransform):
    """Performs the gamma transformation with a randomly chosen gamma. If image values (in any channel) are outside
        the [0,1] interval, this transformation is not performed.

        Args:
            gamma_limit (Tuple(float), optional): Interval from which gamma is selected.

                Defaults to ``(0.8, 1.2)``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image
    """
    def __init__(self, gamma_limit: Tuple[float] = (0.8, 1.2),
                 always_apply: bool = False, p: float = 0.5):
        super().__init__(always_apply, p)
        self.gamma_limit = gamma_limit

    def apply(self, img, gamma=1, **params):
        return F.gamma_transform(img, gamma=gamma)

    def get_params(self, **data):
        return {"gamma": random.uniform(self.gamma_limit[0], self.gamma_limit[1])}

    def __repr__(self):
        return f'RandomGamma({self.gamma_limit}, {self.always_apply}, {self.p})'


class RandomBrightnessContrast(ImageOnlyTransform):
    """Randomly change brightness and contrast of the input image.

        Unlike ``RandomBrightnessContrast`` from `Albumentations`, this transform is using the
        formula :math:`f(a) = (c+1) * a + b`, where :math:`c` is contrast and :math:`b` is brightness.

        Args:
            brightness_limit ((float, float) | float, optional): Interval from which the change in brightness is
                randomly drawn. If the change in brightness is 0, the brightness will not change.

                Must be either of: ``B``, ``(B1, B2)``.

                If a float, the interval will be ``(-B, B)``.

                Defaults to ``0.2``.
            contrast_limit ((float, float) | float, optional): Interval from which the change in contrast is
                randomly drawn. If the change in contrast is 1, the contrast will not change.

                Must be either of: ``C``, ``(C1, C2)``.

                If a float, the interval will be ``(-C, C)``.

                Defaults to ``0.2``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``0.5``.

        Targets:
            image
    """
    def __init__(self, brightness_limit=0.2, contrast_limit=0.2, always_apply=False, p=0.5,):
        super().__init__(always_apply, p)
        self.brightness_limit = to_tuple(brightness_limit)
        self.contrast_limit = to_tuple(contrast_limit)

    def apply(self, img, **params):
        return F.brightness_contrast_adjust(img, params['alpha'], params['beta'])

    def get_params(self, **data):
        return {
            "alpha": 1.0 + random.uniform(self.contrast_limit[0], self.contrast_limit[1]),
            "beta": 0.0 + random.uniform(self.brightness_limit[0], self.brightness_limit[1]),
        }

    def __repr__(self):
        return f'RandomBrightnessContrast({self.brightness_limit}, {self.contrast_limit},  ' \
               f'{self.always_apply}, {self.p})'


class HistogramEqualization(ImageOnlyTransform):
    """Performs equalization of histogram. The equalization is done channel-wise, meaning that each channel is equalized
        separately.

        **Warning! Images are normalized over both spatial and temporal domains together. The output is in the range [0, 1].**

        Args:
            bins (int, optional): Number of bins for image histogram.

                Defaults to ``256``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``False``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image
    """
    def __init__(self, bins: int = 256, always_apply: bool = False, p: float = 1):
        super().__init__(always_apply, p)
        self.bins = bins

    def apply(self, img, **params):
        return F.histogram_equalization(img, self.bins)


class Pad(DualTransform):
    """Pads the input.

        Args:
            pad_size (int | Tuple[int] | List[int | Tuple[int]]): Number of pixels padded to the edges of each axis.

                Must be either of: ``P``, ``(P1, P2)``, ``[P_Z, P_Y, P_X]``, ``[P_Z, P_Y, P_X, P_T]``,
                ``[(P_Z1, P_Z2), (P_Y1, P_Y2), (P_X1, P_X2)]``, or
                ``[(P_Z1, P_Z2), (P_Y1, P_Y2), (P_X1, P_X2), (P_T1, P_T2)]``.

                If an integer, it is equivalent to ``[(P, P), (P, P), (P, P)]``.

                If a tuple, it is equivalent to ``[(P1, P2), (P1, P2), (P1, P2)]``.

                If a list, it must specify padding for all spatial dimensions and possibly also for the time dimension.

                The unspecified dimensions (C and possibly T) are not affected.
            border_mode (str, optional): Values outside image domain are filled according to this mode.

                Defaults to ``'constant'``.
            ival (float | Sequence, optional): Values of `image` voxels outside of the `image` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``0``.
            mval (float | Sequence, optional): Values of `mask` voxels outside of the `mask` domain.
                Only applied when ``border_mode = 'constant'`` or ``border_mode = 'linear_ramp'``.

                Defaults to ``0``.
            ignore_index (float | None, optional): If a float, then transformation of `mask` is done with 
                ``border_mode = 'constant'`` and ``mval = ignore_index``. 
                
                If ``None``, this argument is ignored.

                Defaults to ``None``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``True``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, pad_size: Union[int, Tuple[int],  List[Union[int, Tuple[int]]]], border_mode: str = 'constant',
                 ival: Union[float, Sequence] = 0, mval: Union[float, Sequence] = 0,
                 ignore_index: Union[float, None] = None, always_apply: bool = True, p : float = 1):
        super().__init__(always_apply, p)
        self.pad_size: TypeSextetInt = parse_pads(pad_size)
Lucia Hradecká's avatar
Lucia Hradecká committed
        self.border_mode = border_mode
        self.mask_mode = border_mode 
        self.ival = ival
        self.mval = mval

        if not (ignore_index is None):
            self.mask_mode = "constant"
            self.mval = ignore_index

    def apply(self, img, **params):
        return F.pad_pixels(img, self.pad_size, self.border_mode, self.ival)

    def apply_to_mask(self, mask, **params):
        return F.pad_pixels(mask, self.pad_size, self.mask_mode, self.mval, True)

    def apply_to_keypoints(self, keypoints, **params):
        return F.pad_keypoints(keypoints, self.pad_size)

Lucia Hradecká's avatar
Lucia Hradecká committed
    def __repr__(self):
        return f'Pad({self.pad_size}, {self.border_mode}, {self.ival}, {self.mval}, {self.always_apply}, ' \
               f'{self.p})'


class Normalize(ImageOnlyTransform):
    """Change image mean and standard deviation to the given values (channel-wise).

        Args:
            mean (float | List[float], optional): The desired channel-wise means.

                Must be either of: ``M``, ``[M_1, M_2, ..., M_C]``.

                Defaults to ``0``.
            std (float | List[float], optional): The desired channel-wise standard deviations.

                Must be either of: ``S``, ``[S_1, S_2, ..., S_C]``.

                Defaults to ``1``.
            always_apply (bool, optional): Always apply this transformation in composition. 
            
                Defaults to ``True``.
            p (float, optional): Chance of applying this transformation in composition. 
            
                Defaults to ``1``.

        Targets:
            image
    """
    def __init__(self, mean: Union[float, List[float]] = 0, std: Union[float, List[float]] = 1,
                 always_apply: bool = True, p: float = 1.0):
        super().__init__(always_apply, p)
        self.mean = mean
        self.std = std

    def apply(self, img, **params):
        return F.normalize(img, self.mean, self.std)

    def __repr__(self):
        return f'Normalize({self.mean}, {self.std}, {self.always_apply}, {self.p})'


class Contiguous(DualTransform):
    """Transform the image data to a contiguous array.

        Args:
            always_apply (bool, optional): Always apply this transformation in composition.

                Defaults to ``True``.
            p (float, optional): Chance of applying this transformation in composition.

                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, always_apply: bool = True, p: float = 1.0):
        super().__init__(always_apply, p)

    def apply(self, image, **params):
        return np.ascontiguousarray(image)

    def apply_to_mask(self, mask, **params):
        return np.ascontiguousarray(mask)

    def __repr__(self):
        return f'Contiguous({self.always_apply}, {self.p})'


class StandardizeDatatype(DualTransform):
    """Change image and float_mask datatype to ``np.float32`` without changing intensities.
    Change mask datatype to ``np.int32``.
Lucia Hradecká's avatar
Lucia Hradecká committed

        Args:
            always_apply (bool, optional): Always apply this transformation in composition.

                Defaults to ``True``.
            p (float, optional): Chance of applying this transformation in composition.

                Defaults to ``1``.

        Targets:
            image, mask, float_mask
    """
    def __init__(self, always_apply: bool = True, p: float = 1.0):
        super().__init__(always_apply, p)

    def apply(self, image, **params):
        return image.astype(np.float32)

    def apply_to_mask(self, mask, **params):
        return mask.astype(np.int32)

    def apply_to_float_mask(self, mask, **params):
Lucia Hradecká's avatar
Lucia Hradecká committed
        return mask.astype(np.float32)

    def __repr__(self):
        return f'Float({self.always_apply}, {self.p})'