Skip to content
Snippets Groups Projects
Unverified Commit 104dba60 authored by Giovanni's avatar Giovanni Committed by GitHub
Browse files

Merge pull request #314 from ves-code/v2.4-ves

Minor changes to VES manual
parents efb5a4de a7a899da
No related branches found
No related tags found
No related merge requests found
...@@ -54,6 +54,15 @@ f_{n}(x) &= cos(n \cdot \frac{2\pi}{P} x) \\ ...@@ -54,6 +54,15 @@ f_{n}(x) &= cos(n \cdot \frac{2\pi}{P} x) \\
f_{N}(x) &= cos(N \cdot \frac{2\pi}{P} x) \\ f_{N}(x) &= cos(N \cdot \frac{2\pi}{P} x) \\
\f} \f}
where \f$P=(b-a)\f$ is the periodicity of the interval. where \f$P=(b-a)\f$ is the periodicity of the interval.
They are orthogonal over the interval \f$[a,b]\f$
\f[
\int_{a}^{b} dx \, f_{n}(x)\, f_{m}(x) =
\begin{cases}
0 & n \neq m \\
(b-a) & n = m = 0 \\
(b-a)/2 & n = m \neq 0
\end{cases}.
\f]
\par Examples \par Examples
......
...@@ -49,13 +49,23 @@ f_{2}(x) &= sin(\frac{2\pi }{P} x) \\ ...@@ -49,13 +49,23 @@ f_{2}(x) &= sin(\frac{2\pi }{P} x) \\
f_{3}(x) &= cos(2 \cdot \frac{2\pi}{P} x) \\ f_{3}(x) &= cos(2 \cdot \frac{2\pi}{P} x) \\
f_{4}(x) &= sin(2 \cdot \frac{2\pi}{P} x) \\ f_{4}(x) &= sin(2 \cdot \frac{2\pi}{P} x) \\
& \vdots \\ & \vdots \\
f_{2n-1}(x) &= cos(n \cdot \frac{2\pi}{P} x) \\ f_{2k-1}(x) &= cos(k \cdot \frac{2\pi}{P} x) \\
f_{2n}(x) &= sin(n \cdot \frac{2\pi}{P} x) \\ f_{2k}(x) &= sin(k \cdot \frac{2\pi}{P} x) \\
& \vdots \\ & \vdots \\
f_{2N-1}(x) &= cos(N \cdot \frac{2\pi}{P} x) \\ f_{2N-1}(x) &= cos(N \cdot \frac{2\pi}{P} x) \\
f_{2N}(x) &= sin(N \cdot \frac{2\pi}{P} x) \\ f_{2N}(x) &= sin(N \cdot \frac{2\pi}{P} x) \\
\f} \f}
where \f$P=(b-a)\f$ is the periodicity of the interval. where \f$P=(b-a)\f$ is the periodicity of the interval.
They are orthogonal over the interval \f$[a,b]\f$
\f[
\int_{a}^{b} dx \, f_{n}(x)\, f_{m}(x) =
\begin{cases}
0 & n \neq m \\
(b-a) & n = m = 0 \\
(b-a)/2 & n = m \neq 0
\end{cases}.
\f]
\par Examples \par Examples
......
...@@ -54,6 +54,15 @@ f_{n}(x) &= sin(n \cdot \frac{2\pi}{P} x) \\ ...@@ -54,6 +54,15 @@ f_{n}(x) &= sin(n \cdot \frac{2\pi}{P} x) \\
f_{N}(x) &= sin(N \cdot \frac{2\pi}{P} x) \\ f_{N}(x) &= sin(N \cdot \frac{2\pi}{P} x) \\
\f} \f}
where \f$P=(b-a)\f$ is the periodicity of the interval. where \f$P=(b-a)\f$ is the periodicity of the interval.
They are orthogonal over the interval \f$[a,b]\f$
\f[
\int_{a}^{b} dx \, f_{n}(x)\, f_{m}(x) =
\begin{cases}
0 & n \neq m \\
(b-a) & n = m = 0 \\
(b-a)/2 & n = m \neq 0
\end{cases}.
\f]
\par Examples \par Examples
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment