Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
for (m = 0; m < DIM; m++)
{
if (!opts->nFreeze[gf][m])
{
partsum += (fb[i][m] - fmg[a][m])*fb[i][m];
}
}
i++;
}
}
sfree(fmg);
return partsum;
}
//! Print some stuff, like beta, whatever that means.
static real pr_beta(t_commrec *cr, t_grpopts *opts, t_mdatoms *mdatoms,
gmx_mtop_t *top_global,
em_state_t *s_min, em_state_t *s_b)
{
double sum;
/* This is just the classical Polak-Ribiere calculation of beta;
* it looks a bit complicated since we take freeze groups into account,
* and might have to sum it in parallel runs.
*/
if (!DOMAINDECOMP(cr) ||
(s_min->s.ddp_count == cr->dd->ddp_count &&
s_b->s.ddp_count == cr->dd->ddp_count))
{
const rvec *fm = as_rvec_array(s_min->f.data());
const rvec *fb = as_rvec_array(s_b->f.data());
sum = 0;
int gf = 0;
/* This part of code can be incorrect with DD,
* since the atom ordering in s_b and s_min might differ.
*/
for (int i = 0; i < mdatoms->homenr; i++)
{
if (mdatoms->cFREEZE)
{
gf = mdatoms->cFREEZE[i];
}
for (int m = 0; m < DIM; m++)
{
if (!opts->nFreeze[gf][m])
{
sum += (fb[i][m] - fm[i][m])*fb[i][m];
}
}
}
}
else
{
/* We need to reorder cgs while summing */
sum = reorder_partsum(cr, opts, mdatoms, top_global, s_min, s_b);
}
if (PAR(cr))
{
gmx_sumd(1, &sum, cr);
}
return sum/gmx::square(s_min->fnorm);
}
namespace gmx
{
/*! \brief Do conjugate gradients minimization
\copydoc integrator_t(FILE *fplog, t_commrec *cr, const gmx::MDLogger &mdlog,
int nfile, const t_filenm fnm[],
const gmx_output_env_t *oenv,
const MdrunOptions &mdrunOptions,
gmx_vsite_t *vsite, gmx_constr_t constr,
gmx::IMDOutputProvider *outputProvider,
t_inputrec *inputrec,
gmx_mtop_t *top_global, t_fcdata *fcd,
t_state *state_global,
gmx::MDAtoms *mdAtoms,
t_nrnb *nrnb, gmx_wallcycle_t wcycle,
gmx_edsam_t ed,
t_forcerec *fr,
const ReplicaExchangeParameters &replExParams,
gmx_membed_t gmx_unused *membed,
gmx_walltime_accounting_t walltime_accounting)
*/
double do_cg(FILE *fplog, t_commrec *cr, const gmx::MDLogger gmx_unused &mdlog,
int nfile, const t_filenm fnm[],
const gmx_output_env_t gmx_unused *oenv,
const MdrunOptions &mdrunOptions,
gmx_vsite_t *vsite, gmx_constr_t constr,
gmx::IMDOutputProvider *outputProvider,
t_inputrec *inputrec,
gmx_mtop_t *top_global, t_fcdata *fcd,
t_state *state_global,
ObservablesHistory *observablesHistory,
gmx::MDAtoms *mdAtoms,
t_nrnb *nrnb, gmx_wallcycle_t wcycle,
t_forcerec *fr,
const ReplicaExchangeParameters gmx_unused &replExParams,
gmx_membed_t gmx_unused *membed,
gmx_walltime_accounting_t walltime_accounting)
{
const char *CG = "Polak-Ribiere Conjugate Gradients";
gmx_localtop_t *top;
gmx_enerdata_t *enerd;
gmx_global_stat_t gstat;
t_graph *graph;
double tmp, minstep;
real stepsize;
real a, b, c, beta = 0.0;
real epot_repl = 0;
real pnorm;
t_mdebin *mdebin;
gmx_bool converged, foundlower;
rvec mu_tot;
gmx_bool do_log = FALSE, do_ene = FALSE, do_x, do_f;
tensor vir, pres;
int number_steps, neval = 0, nstcg = inputrec->nstcgsteep;
gmx_mdoutf_t outf;
int m, step, nminstep;
auto mdatoms = mdAtoms->mdatoms();
step = 0;
if (MASTER(cr))
{
// In CG, the state is extended with a search direction
state_global->flags |= (1<<estCGP);
// Ensure the extra per-atom state array gets allocated
state_change_natoms(state_global, state_global->natoms);
// Initialize the search direction to zero
for (RVec &cg_p : state_global->cg_p)
{
cg_p = { 0, 0, 0 };
}
}
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
/* Create 4 states on the stack and extract pointers that we will swap */
em_state_t s0 {}, s1 {}, s2 {}, s3 {};
em_state_t *s_min = &s0;
em_state_t *s_a = &s1;
em_state_t *s_b = &s2;
em_state_t *s_c = &s3;
/* Init em and store the local state in s_min */
init_em(fplog, CG, cr, outputProvider, inputrec, mdrunOptions,
state_global, top_global, s_min, &top,
nrnb, mu_tot, fr, &enerd, &graph, mdAtoms, &gstat,
vsite, constr, nullptr,
nfile, fnm, &outf, &mdebin, wcycle);
/* Print to log file */
print_em_start(fplog, cr, walltime_accounting, wcycle, CG);
/* Max number of steps */
number_steps = inputrec->nsteps;
if (MASTER(cr))
{
sp_header(stderr, CG, inputrec->em_tol, number_steps);
}
if (fplog)
{
sp_header(fplog, CG, inputrec->em_tol, number_steps);
}
/* Call the force routine and some auxiliary (neighboursearching etc.) */
/* do_force always puts the charge groups in the box and shifts again
* We do not unshift, so molecules are always whole in congrad.c
*/
evaluate_energy(fplog, cr,
top_global, s_min, top,
inputrec, nrnb, wcycle, gstat,
vsite, constr, fcd, graph, mdAtoms, fr,
mu_tot, enerd, vir, pres, -1, TRUE);
where();
if (MASTER(cr))
{
/* Copy stuff to the energy bin for easy printing etc. */
upd_mdebin(mdebin, FALSE, FALSE, (double)step,
mdatoms->tmass, enerd, &s_min->s, inputrec->fepvals, inputrec->expandedvals, s_min->s.box,
nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
print_ebin_header(fplog, step, step);
print_ebin(mdoutf_get_fp_ene(outf), TRUE, FALSE, FALSE, fplog, step, step, eprNORMAL,
mdebin, fcd, &(top_global->groups), &(inputrec->opts), nullptr);
}
where();
/* Estimate/guess the initial stepsize */
stepsize = inputrec->em_stepsize/s_min->fnorm;
if (MASTER(cr))
{
double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
fprintf(stderr, " F-max = %12.5e on atom %d\n",
s_min->fmax, s_min->a_fmax+1);
fprintf(stderr, " F-Norm = %12.5e\n",
s_min->fnorm/sqrtNumAtoms);
fprintf(stderr, "\n");
/* and copy to the log file too... */
fprintf(fplog, " F-max = %12.5e on atom %d\n",
s_min->fmax, s_min->a_fmax+1);
fprintf(fplog, " F-Norm = %12.5e\n",
s_min->fnorm/sqrtNumAtoms);
fprintf(fplog, "\n");
}
/* Start the loop over CG steps.
* Each successful step is counted, and we continue until
* we either converge or reach the max number of steps.
*/
converged = FALSE;
for (step = 0; (number_steps < 0 || step <= number_steps) && !converged; step++)
{
/* start taking steps in a new direction
* First time we enter the routine, beta=0, and the direction is
* simply the negative gradient.
*/
/* Calculate the new direction in p, and the gradient in this direction, gpa */
rvec *pm = as_rvec_array(s_min->s.cg_p.data());
const rvec *sfm = as_rvec_array(s_min->f.data());
double gpa = 0;
int gf = 0;
for (int i = 0; i < mdatoms->homenr; i++)
{
if (mdatoms->cFREEZE)
{
gf = mdatoms->cFREEZE[i];
}
for (m = 0; m < DIM; m++)
{
if (!inputrec->opts.nFreeze[gf][m])
{
pm[i][m] = sfm[i][m] + beta*pm[i][m];
gpa -= pm[i][m]*sfm[i][m];
/* f is negative gradient, thus the sign */
}
else
{
pm[i][m] = 0;
}
}
}
/* Sum the gradient along the line across CPUs */
if (PAR(cr))
{
gmx_sumd(1, &gpa, cr);
}
/* Calculate the norm of the search vector */
get_f_norm_max(cr, &(inputrec->opts), mdatoms, pm, &pnorm, nullptr, nullptr);
/* Just in case stepsize reaches zero due to numerical precision... */
if (stepsize <= 0)
{
stepsize = inputrec->em_stepsize/pnorm;
}
/*
* Double check the value of the derivative in the search direction.
* If it is positive it must be due to the old information in the
* CG formula, so just remove that and start over with beta=0.
* This corresponds to a steepest descent step.
*/
if (gpa > 0)
{
beta = 0;
step--; /* Don't count this step since we are restarting */
continue; /* Go back to the beginning of the big for-loop */
}
/* Calculate minimum allowed stepsize, before the average (norm)
* relative change in coordinate is smaller than precision
*/
minstep = 0;
for (int i = 0; i < mdatoms->homenr; i++)
{
for (m = 0; m < DIM; m++)
{
tmp = fabs(s_min->s.x[i][m]);
if (tmp < 1.0)
{
tmp = 1.0;
}
tmp = pm[i][m]/tmp;
minstep += tmp*tmp;
}
}
/* Add up from all CPUs */
if (PAR(cr))
{
gmx_sumd(1, &minstep, cr);
}
minstep = GMX_REAL_EPS/sqrt(minstep/(3*top_global->natoms));
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
if (stepsize < minstep)
{
converged = TRUE;
break;
}
/* Write coordinates if necessary */
do_x = do_per_step(step, inputrec->nstxout);
do_f = do_per_step(step, inputrec->nstfout);
write_em_traj(fplog, cr, outf, do_x, do_f, nullptr,
top_global, inputrec, step,
s_min, state_global, observablesHistory);
/* Take a step downhill.
* In theory, we should minimize the function along this direction.
* That is quite possible, but it turns out to take 5-10 function evaluations
* for each line. However, we dont really need to find the exact minimum -
* it is much better to start a new CG step in a modified direction as soon
* as we are close to it. This will save a lot of energy evaluations.
*
* In practice, we just try to take a single step.
* If it worked (i.e. lowered the energy), we increase the stepsize but
* the continue straight to the next CG step without trying to find any minimum.
* If it didn't work (higher energy), there must be a minimum somewhere between
* the old position and the new one.
*
* Due to the finite numerical accuracy, it turns out that it is a good idea
* to even accept a SMALL increase in energy, if the derivative is still downhill.
* This leads to lower final energies in the tests I've done. / Erik
*/
s_a->epot = s_min->epot;
a = 0.0;
c = a + stepsize; /* reference position along line is zero */
if (DOMAINDECOMP(cr) && s_min->s.ddp_count < cr->dd->ddp_count)
{
em_dd_partition_system(fplog, step, cr, top_global, inputrec,
s_min, top, mdAtoms, fr, vsite, constr,
nrnb, wcycle);
}
/* Take a trial step (new coords in s_c) */
do_em_step(cr, inputrec, mdatoms, fr->bMolPBC, s_min, c, &s_min->s.cg_p, s_c,
constr, top, nrnb, wcycle, -1);
neval++;
/* Calculate energy for the trial step */
evaluate_energy(fplog, cr,
top_global, s_c, top,
inputrec, nrnb, wcycle, gstat,
vsite, constr, fcd, graph, mdAtoms, fr,
mu_tot, enerd, vir, pres, -1, FALSE);
/* Calc derivative along line */
const rvec *pc = as_rvec_array(s_c->s.cg_p.data());
const rvec *sfc = as_rvec_array(s_c->f.data());
double gpc = 0;
for (int i = 0; i < mdatoms->homenr; i++)
{
for (m = 0; m < DIM; m++)
{
gpc -= pc[i][m]*sfc[i][m]; /* f is negative gradient, thus the sign */
}
}
/* Sum the gradient along the line across CPUs */
if (PAR(cr))
{
gmx_sumd(1, &gpc, cr);
}
/* This is the max amount of increase in energy we tolerate */
tmp = sqrt(GMX_REAL_EPS)*fabs(s_a->epot);
/* Accept the step if the energy is lower, or if it is not significantly higher
* and the line derivative is still negative.
*/
if (s_c->epot < s_a->epot || (gpc < 0 && s_c->epot < (s_a->epot + tmp)))
{
foundlower = TRUE;
/* Great, we found a better energy. Increase step for next iteration
* if we are still going down, decrease it otherwise
*/
if (gpc < 0)
{
stepsize *= 1.618034; /* The golden section */
}
else
{
stepsize *= 0.618034; /* 1/golden section */
}
}
else
{
/* New energy is the same or higher. We will have to do some work
* to find a smaller value in the interval. Take smaller step next time!
*/
foundlower = FALSE;
stepsize *= 0.618034;
}
/* OK, if we didn't find a lower value we will have to locate one now - there must
* be one in the interval [a=0,c].
* The same thing is valid here, though: Don't spend dozens of iterations to find
* the line minimum. We try to interpolate based on the derivative at the endpoints,
* and only continue until we find a lower value. In most cases this means 1-2 iterations.
*
* I also have a safeguard for potentially really pathological functions so we never
* take more than 20 steps before we give up ...
*
* If we already found a lower value we just skip this step and continue to the update.
*/
double gpb;
if (!foundlower)
{
nminstep = 0;
do
{
/* Select a new trial point.
* If the derivatives at points a & c have different sign we interpolate to zero,
* otherwise just do a bisection.
*/
if (gpa < 0 && gpc > 0)
{
b = a + gpa*(a-c)/(gpc-gpa);
}
else
{
b = 0.5*(a+c);
}
/* safeguard if interpolation close to machine accuracy causes errors:
* never go outside the interval
*/
if (b <= a || b >= c)
{
b = 0.5*(a+c);
}
if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
{
/* Reload the old state */
em_dd_partition_system(fplog, -1, cr, top_global, inputrec,
s_min, top, mdAtoms, fr, vsite, constr,
nrnb, wcycle);
}
/* Take a trial step to this new point - new coords in s_b */
do_em_step(cr, inputrec, mdatoms, fr->bMolPBC, s_min, b, &s_min->s.cg_p, s_b,
constr, top, nrnb, wcycle, -1);
neval++;
/* Calculate energy for the trial step */
evaluate_energy(fplog, cr,
top_global, s_b, top,
inputrec, nrnb, wcycle, gstat,
vsite, constr, fcd, graph, mdAtoms, fr,
mu_tot, enerd, vir, pres, -1, FALSE);
/* p does not change within a step, but since the domain decomposition
* might change, we have to use cg_p of s_b here.
*/
const rvec *pb = as_rvec_array(s_b->s.cg_p.data());
const rvec *sfb = as_rvec_array(s_b->f.data());
gpb = 0;
for (int i = 0; i < mdatoms->homenr; i++)
{
for (m = 0; m < DIM; m++)
{
gpb -= pb[i][m]*sfb[i][m]; /* f is negative gradient, thus the sign */
}
}
/* Sum the gradient along the line across CPUs */
if (PAR(cr))
{
gmx_sumd(1, &gpb, cr);
}
if (debug)
{
fprintf(debug, "CGE: EpotA %f EpotB %f EpotC %f gpb %f\n",
s_a->epot, s_b->epot, s_c->epot, gpb);
}
epot_repl = s_b->epot;
/* Keep one of the intervals based on the value of the derivative at the new point */
if (gpb > 0)
{
/* Replace c endpoint with b */
swap_em_state(&s_b, &s_c);
c = b;
gpc = gpb;
}
else
{
/* Replace a endpoint with b */
swap_em_state(&s_b, &s_a);
a = b;
gpa = gpb;
}
/*
* Stop search as soon as we find a value smaller than the endpoints.
* Never run more than 20 steps, no matter what.
*/
nminstep++;
}
while ((epot_repl > s_a->epot || epot_repl > s_c->epot) &&
(nminstep < 20));
if (fabs(epot_repl - s_min->epot) < fabs(s_min->epot)*GMX_REAL_EPS ||
nminstep >= 20)
{
/* OK. We couldn't find a significantly lower energy.
* If beta==0 this was steepest descent, and then we give up.
* If not, set beta=0 and restart with steepest descent before quitting.
*/
if (beta == 0.0)
{
/* Converged */
converged = TRUE;
break;
}
else
{
/* Reset memory before giving up */
beta = 0.0;
continue;
}
}
/* Select min energy state of A & C, put the best in B.
*/
if (s_c->epot < s_a->epot)
{
if (debug)
{
fprintf(debug, "CGE: C (%f) is lower than A (%f), moving C to B\n",
s_c->epot, s_a->epot);
}
swap_em_state(&s_b, &s_c);
gpb = gpc;
}
else
{
if (debug)
{
fprintf(debug, "CGE: A (%f) is lower than C (%f), moving A to B\n",
s_a->epot, s_c->epot);
}
swap_em_state(&s_b, &s_a);
gpb = gpa;
}
}
else
{
if (debug)
{
fprintf(debug, "CGE: Found a lower energy %f, moving C to B\n",
s_c->epot);
}
swap_em_state(&s_b, &s_c);
gpb = gpc;
}
/* new search direction */
/* beta = 0 means forget all memory and restart with steepest descents. */
if (nstcg && ((step % nstcg) == 0))
{
beta = 0.0;
}
else
{
/* s_min->fnorm cannot be zero, because then we would have converged
* and broken out.
*/
/* Polak-Ribiere update.
* Change to fnorm2/fnorm2_old for Fletcher-Reeves
*/
beta = pr_beta(cr, &inputrec->opts, mdatoms, top_global, s_min, s_b);
}
/* Limit beta to prevent oscillations */
if (fabs(beta) > 5.0)
{
beta = 0.0;
}
/* update positions */
swap_em_state(&s_min, &s_b);
gpa = gpb;
/* Print it if necessary */
if (MASTER(cr))
{
if (mdrunOptions.verbose)
{
double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
step, s_min->epot, s_min->fnorm/sqrtNumAtoms,
s_min->fmax, s_min->a_fmax+1);
fflush(stderr);
}
/* Store the new (lower) energies */
upd_mdebin(mdebin, FALSE, FALSE, (double)step,
mdatoms->tmass, enerd, &s_min->s, inputrec->fepvals, inputrec->expandedvals, s_min->s.box,
nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
do_log = do_per_step(step, inputrec->nstlog);
do_ene = do_per_step(step, inputrec->nstenergy);
/* Prepare IMD energy record, if bIMD is TRUE. */
IMD_fill_energy_record(inputrec->bIMD, inputrec->imd, enerd, step, TRUE);
if (do_log)
{
print_ebin_header(fplog, step, step);
}
print_ebin(mdoutf_get_fp_ene(outf), do_ene, FALSE, FALSE,
do_log ? fplog : nullptr, step, step, eprNORMAL,
mdebin, fcd, &(top_global->groups), &(inputrec->opts), nullptr);
}
/* Send energies and positions to the IMD client if bIMD is TRUE. */
if (MASTER(cr) && do_IMD(inputrec->bIMD, step, cr, TRUE, state_global->box, as_rvec_array(state_global->x.data()), inputrec, 0, wcycle))
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
{
IMD_send_positions(inputrec->imd);
}
/* Stop when the maximum force lies below tolerance.
* If we have reached machine precision, converged is already set to true.
*/
converged = converged || (s_min->fmax < inputrec->em_tol);
} /* End of the loop */
/* IMD cleanup, if bIMD is TRUE. */
IMD_finalize(inputrec->bIMD, inputrec->imd);
if (converged)
{
step--; /* we never took that last step in this case */
}
if (s_min->fmax > inputrec->em_tol)
{
if (MASTER(cr))
{
warn_step(stderr, inputrec->em_tol, step-1 == number_steps, FALSE);
warn_step(fplog, inputrec->em_tol, step-1 == number_steps, FALSE);
}
converged = FALSE;
}
if (MASTER(cr))
{
/* If we printed energy and/or logfile last step (which was the last step)
* we don't have to do it again, but otherwise print the final values.
*/
if (!do_log)
{
/* Write final value to log since we didn't do anything the last step */
print_ebin_header(fplog, step, step);
}
if (!do_ene || !do_log)
{
/* Write final energy file entries */
print_ebin(mdoutf_get_fp_ene(outf), !do_ene, FALSE, FALSE,
!do_log ? fplog : nullptr, step, step, eprNORMAL,
mdebin, fcd, &(top_global->groups), &(inputrec->opts), nullptr);
}
}
/* Print some stuff... */
if (MASTER(cr))
{
fprintf(stderr, "\nwriting lowest energy coordinates.\n");
}
/* IMPORTANT!
* For accurate normal mode calculation it is imperative that we
* store the last conformation into the full precision binary trajectory.
*
* However, we should only do it if we did NOT already write this step
* above (which we did if do_x or do_f was true).
*/
/* Note that with 0 < nstfout != nstxout we can end up with two frames
* in the trajectory with the same step number.
*/
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
do_x = !do_per_step(step, inputrec->nstxout);
do_f = (inputrec->nstfout > 0 && !do_per_step(step, inputrec->nstfout));
write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm),
top_global, inputrec, step,
s_min, state_global, observablesHistory);
if (MASTER(cr))
{
double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
print_converged(stderr, CG, inputrec->em_tol, step, converged, number_steps,
s_min, sqrtNumAtoms);
print_converged(fplog, CG, inputrec->em_tol, step, converged, number_steps,
s_min, sqrtNumAtoms);
fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
}
finish_em(cr, outf, walltime_accounting, wcycle);
/* To print the actual number of steps we needed somewhere */
walltime_accounting_set_nsteps_done(walltime_accounting, step);
return 0;
} /* That's all folks */
/*! \brief Do L-BFGS conjugate gradients minimization
\copydoc integrator_t(FILE *fplog, t_commrec *cr, const gmx::MDLogger &mdlog,
int nfile, const t_filenm fnm[],
const gmx_output_env_t *oenv,
const MdrunOptions &mdrunOptions,
gmx_vsite_t *vsite, gmx_constr_t constr,
gmx::IMDOutputProvider *outputProvider,
t_inputrec *inputrec,
gmx_mtop_t *top_global, t_fcdata *fcd,
t_state *state_global,
gmx::MDAtoms *mdAtoms,
t_nrnb *nrnb, gmx_wallcycle_t wcycle,
gmx_edsam_t ed,
t_forcerec *fr,
const ReplicaExchangeParameters &replExParams,
gmx_membed_t gmx_unused *membed,
gmx_walltime_accounting_t walltime_accounting)
*/
double do_lbfgs(FILE *fplog, t_commrec *cr, const gmx::MDLogger gmx_unused &mdlog,
int nfile, const t_filenm fnm[],
const gmx_output_env_t gmx_unused *oenv,
const MdrunOptions &mdrunOptions,
gmx_vsite_t *vsite, gmx_constr_t constr,
gmx::IMDOutputProvider *outputProvider,
t_inputrec *inputrec,
gmx_mtop_t *top_global, t_fcdata *fcd,
t_state *state_global,
ObservablesHistory *observablesHistory,
gmx::MDAtoms *mdAtoms,
t_nrnb *nrnb, gmx_wallcycle_t wcycle,
t_forcerec *fr,
const ReplicaExchangeParameters gmx_unused &replExParams,
gmx_membed_t gmx_unused *membed,
gmx_walltime_accounting_t walltime_accounting)
{
static const char *LBFGS = "Low-Memory BFGS Minimizer";
em_state_t ems;
gmx_localtop_t *top;
gmx_enerdata_t *enerd;
gmx_global_stat_t gstat;
t_graph *graph;
int ncorr, nmaxcorr, point, cp, neval, nminstep;
double stepsize, step_taken, gpa, gpb, gpc, tmp, minstep;
real *rho, *alpha, *p, *s, **dx, **dg;
real a, b, c, maxdelta, delta;
real diag, Epot0;
real dgdx, dgdg, sq, yr, beta;
t_mdebin *mdebin;
gmx_bool converged;
rvec mu_tot;
gmx_bool do_log, do_ene, do_x, do_f, foundlower, *frozen;
tensor vir, pres;
int start, end, number_steps;
gmx_mdoutf_t outf;
int i, k, m, n, gf, step;
int mdof_flags;
auto mdatoms = mdAtoms->mdatoms();
if (PAR(cr))
{
gmx_fatal(FARGS, "Cannot do parallel L-BFGS Minimization - yet.\n");
}
if (nullptr != constr)
{
gmx_fatal(FARGS, "The combination of constraints and L-BFGS minimization is not implemented. Either do not use constraints, or use another minimizer (e.g. steepest descent).");
}
n = 3*state_global->natoms;
nmaxcorr = inputrec->nbfgscorr;
snew(frozen, n);
snew(p, n);
snew(rho, nmaxcorr);
snew(alpha, nmaxcorr);
snew(dx, nmaxcorr);
for (i = 0; i < nmaxcorr; i++)
{
snew(dx[i], n);
}
snew(dg, nmaxcorr);
for (i = 0; i < nmaxcorr; i++)
{
snew(dg[i], n);
}
step = 0;
neval = 0;
/* Init em */
init_em(fplog, LBFGS, cr, outputProvider, inputrec, mdrunOptions,
state_global, top_global, &ems, &top,
nrnb, mu_tot, fr, &enerd, &graph, mdAtoms, &gstat,
vsite, constr, nullptr,
nfile, fnm, &outf, &mdebin, wcycle);
start = 0;
end = mdatoms->homenr;
/* We need 4 working states */
em_state_t s0 {}, s1 {}, s2 {}, s3 {};
em_state_t *sa = &s0;
em_state_t *sb = &s1;
em_state_t *sc = &s2;
em_state_t *last = &s3;
/* Initialize by copying the state from ems (we could skip x and f here) */
*sa = ems;
*sb = ems;
*sc = ems;
/* Print to log file */
print_em_start(fplog, cr, walltime_accounting, wcycle, LBFGS);
do_log = do_ene = do_x = do_f = TRUE;
/* Max number of steps */
number_steps = inputrec->nsteps;
/* Create a 3*natoms index to tell whether each degree of freedom is frozen */
gf = 0;
for (i = start; i < end; i++)
{
if (mdatoms->cFREEZE)
{
gf = mdatoms->cFREEZE[i];
}
for (m = 0; m < DIM; m++)
{
frozen[3*i+m] = inputrec->opts.nFreeze[gf][m];
}
}
if (MASTER(cr))
{
sp_header(stderr, LBFGS, inputrec->em_tol, number_steps);
}
if (fplog)
{
sp_header(fplog, LBFGS, inputrec->em_tol, number_steps);
}
if (vsite)
{
construct_vsites(vsite, as_rvec_array(state_global->x.data()), 1, nullptr,
top->idef.iparams, top->idef.il,
fr->ePBC, fr->bMolPBC, cr, state_global->box);
}
/* Call the force routine and some auxiliary (neighboursearching etc.) */
/* do_force always puts the charge groups in the box and shifts again
* We do not unshift, so molecules are always whole
*/
neval++;
evaluate_energy(fplog, cr,
top_global, &ems, top,
inputrec, nrnb, wcycle, gstat,
vsite, constr, fcd, graph, mdAtoms, fr,
mu_tot, enerd, vir, pres, -1, TRUE);
where();
if (MASTER(cr))
{
/* Copy stuff to the energy bin for easy printing etc. */
upd_mdebin(mdebin, FALSE, FALSE, (double)step,
mdatoms->tmass, enerd, state_global, inputrec->fepvals, inputrec->expandedvals, state_global->box,
nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
print_ebin_header(fplog, step, step);
print_ebin(mdoutf_get_fp_ene(outf), TRUE, FALSE, FALSE, fplog, step, step, eprNORMAL,
mdebin, fcd, &(top_global->groups), &(inputrec->opts), nullptr);
}
where();
/* Set the initial step.
* since it will be multiplied by the non-normalized search direction
* vector (force vector the first time), we scale it by the
* norm of the force.
*/
if (MASTER(cr))
{
double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
fprintf(stderr, "Using %d BFGS correction steps.\n\n", nmaxcorr);
fprintf(stderr, " F-max = %12.5e on atom %d\n", ems.fmax, ems.a_fmax + 1);
fprintf(stderr, " F-Norm = %12.5e\n", ems.fnorm/sqrtNumAtoms);
fprintf(stderr, "\n");
/* and copy to the log file too... */
fprintf(fplog, "Using %d BFGS correction steps.\n\n", nmaxcorr);
fprintf(fplog, " F-max = %12.5e on atom %d\n", ems.fmax, ems.a_fmax + 1);
fprintf(fplog, " F-Norm = %12.5e\n", ems.fnorm/sqrtNumAtoms);
fprintf(fplog, "\n");
}
// Point is an index to the memory of search directions, where 0 is the first one.
point = 0;
// Set initial search direction to the force (-gradient), or 0 for frozen particles.
real *fInit = static_cast<real *>(as_rvec_array(ems.f.data())[0]);
for (i = 0; i < n; i++)
{
if (!frozen[i])
{
dx[point][i] = fInit[i]; /* Initial search direction */
}
else
{
dx[point][i] = 0;
}
}
// Stepsize will be modified during the search, and actually it is not critical
// (the main efficiency in the algorithm comes from changing directions), but
// we still need an initial value, so estimate it as the inverse of the norm
// so we take small steps where the potential fluctuates a lot.
stepsize = 1.0/ems.fnorm;
/* Start the loop over BFGS steps.
* Each successful step is counted, and we continue until
* we either converge or reach the max number of steps.
*/
ncorr = 0;
/* Set the gradient from the force */
converged = FALSE;
for (step = 0; (number_steps < 0 || step <= number_steps) && !converged; step++)
{
/* Write coordinates if necessary */
do_x = do_per_step(step, inputrec->nstxout);
do_f = do_per_step(step, inputrec->nstfout);
mdof_flags = 0;
if (do_x)
{
mdof_flags |= MDOF_X;
}
if (do_f)
{
mdof_flags |= MDOF_F;
}
if (inputrec->bIMD)
{
mdof_flags |= MDOF_IMD;
}
mdoutf_write_to_trajectory_files(fplog, cr, outf, mdof_flags,
top_global, step, (real)step, &ems.s, state_global, observablesHistory, ems.f);
/* Do the linesearching in the direction dx[point][0..(n-1)] */
/* make s a pointer to current search direction - point=0 first time we get here */
s = dx[point];
real *xx = static_cast<real *>(as_rvec_array(ems.s.x.data())[0]);
real *ff = static_cast<real *>(as_rvec_array(ems.f.data())[0]);
// calculate line gradient in position A
for (gpa = 0, i = 0; i < n; i++)
{
gpa -= s[i]*ff[i];
}
/* Calculate minimum allowed stepsize along the line, before the average (norm)
* relative change in coordinate is smaller than precision
*/