Skip to content
Snippets Groups Projects
minimize.cpp.preplumed 104 KiB
Newer Older
carlocamilloni's avatar
carlocamilloni committed
                           const MdrunOptions &mdrunOptions,
                           gmx_vsite_t *vsite, gmx_constr_t constr,
                           gmx::IMDOutputProvider *outputProvider,
                           t_inputrec *inputrec,
                           gmx_mtop_t *top_global, t_fcdata *fcd,
                           t_state *state_global,
                           gmx::MDAtoms *mdAtoms,
                           t_nrnb *nrnb, gmx_wallcycle_t wcycle,
                           gmx_edsam_t ed,
                           t_forcerec *fr,
                           const ReplicaExchangeParameters &replExParams,
                           gmx_membed_t gmx_unused *membed,
                           gmx_walltime_accounting_t walltime_accounting)
 */
double do_cg(FILE *fplog, t_commrec *cr, const gmx::MDLogger gmx_unused &mdlog,
             int nfile, const t_filenm fnm[],
             const gmx_output_env_t gmx_unused *oenv,
             const MdrunOptions &mdrunOptions,
             gmx_vsite_t *vsite, gmx_constr_t constr,
             gmx::IMDOutputProvider *outputProvider,
             t_inputrec *inputrec,
             gmx_mtop_t *top_global, t_fcdata *fcd,
             t_state *state_global,
             ObservablesHistory *observablesHistory,
             gmx::MDAtoms *mdAtoms,
             t_nrnb *nrnb, gmx_wallcycle_t wcycle,
             t_forcerec *fr,
             const ReplicaExchangeParameters gmx_unused &replExParams,
             gmx_membed_t gmx_unused *membed,
             gmx_walltime_accounting_t walltime_accounting)
{
    const char       *CG = "Polak-Ribiere Conjugate Gradients";

    gmx_localtop_t   *top;
    gmx_enerdata_t   *enerd;
    gmx_global_stat_t gstat;
    t_graph          *graph;
    double            tmp, minstep;
    real              stepsize;
    real              a, b, c, beta = 0.0;
    real              epot_repl = 0;
    real              pnorm;
    t_mdebin         *mdebin;
    gmx_bool          converged, foundlower;
    rvec              mu_tot;
    gmx_bool          do_log = FALSE, do_ene = FALSE, do_x, do_f;
    tensor            vir, pres;
    int               number_steps, neval = 0, nstcg = inputrec->nstcgsteep;
    gmx_mdoutf_t      outf;
    int               m, step, nminstep;
    auto              mdatoms = mdAtoms->mdatoms();

    step = 0;

    if (MASTER(cr))
    {
        // In CG, the state is extended with a search direction
        state_global->flags |= (1<<estCGP);

        // Ensure the extra per-atom state array gets allocated
        state_change_natoms(state_global, state_global->natoms);

        // Initialize the search direction to zero
        for (RVec &cg_p : state_global->cg_p)
        {
            cg_p = { 0, 0, 0 };
        }
    }
carlocamilloni's avatar
carlocamilloni committed

    /* Create 4 states on the stack and extract pointers that we will swap */
    em_state_t  s0 {}, s1 {}, s2 {}, s3 {};
    em_state_t *s_min = &s0;
    em_state_t *s_a   = &s1;
    em_state_t *s_b   = &s2;
    em_state_t *s_c   = &s3;

    /* Init em and store the local state in s_min */
    init_em(fplog, CG, cr, outputProvider, inputrec, mdrunOptions,
            state_global, top_global, s_min, &top,
            nrnb, mu_tot, fr, &enerd, &graph, mdAtoms, &gstat,
            vsite, constr, nullptr,
            nfile, fnm, &outf, &mdebin, wcycle);

    /* Print to log file */
    print_em_start(fplog, cr, walltime_accounting, wcycle, CG);

    /* Max number of steps */
    number_steps = inputrec->nsteps;

    if (MASTER(cr))
    {
        sp_header(stderr, CG, inputrec->em_tol, number_steps);
    }
    if (fplog)
    {
        sp_header(fplog, CG, inputrec->em_tol, number_steps);
    }

    /* Call the force routine and some auxiliary (neighboursearching etc.) */
    /* do_force always puts the charge groups in the box and shifts again
     * We do not unshift, so molecules are always whole in congrad.c
     */
    evaluate_energy(fplog, cr,
                    top_global, s_min, top,
                    inputrec, nrnb, wcycle, gstat,
                    vsite, constr, fcd, graph, mdAtoms, fr,
                    mu_tot, enerd, vir, pres, -1, TRUE);
    where();

    if (MASTER(cr))
    {
        /* Copy stuff to the energy bin for easy printing etc. */
        upd_mdebin(mdebin, FALSE, FALSE, (double)step,
                   mdatoms->tmass, enerd, &s_min->s, inputrec->fepvals, inputrec->expandedvals, s_min->s.box,
                   nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);

        print_ebin_header(fplog, step, step);
        print_ebin(mdoutf_get_fp_ene(outf), TRUE, FALSE, FALSE, fplog, step, step, eprNORMAL,
                   mdebin, fcd, &(top_global->groups), &(inputrec->opts), nullptr);
    }
    where();

    /* Estimate/guess the initial stepsize */
    stepsize = inputrec->em_stepsize/s_min->fnorm;

    if (MASTER(cr))
    {
        double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
        fprintf(stderr, "   F-max             = %12.5e on atom %d\n",
                s_min->fmax, s_min->a_fmax+1);
        fprintf(stderr, "   F-Norm            = %12.5e\n",
                s_min->fnorm/sqrtNumAtoms);
        fprintf(stderr, "\n");
        /* and copy to the log file too... */
        fprintf(fplog, "   F-max             = %12.5e on atom %d\n",
                s_min->fmax, s_min->a_fmax+1);
        fprintf(fplog, "   F-Norm            = %12.5e\n",
                s_min->fnorm/sqrtNumAtoms);
        fprintf(fplog, "\n");
    }
    /* Start the loop over CG steps.
     * Each successful step is counted, and we continue until
     * we either converge or reach the max number of steps.
     */
    converged = FALSE;
    for (step = 0; (number_steps < 0 || step <= number_steps) && !converged; step++)
    {

        /* start taking steps in a new direction
         * First time we enter the routine, beta=0, and the direction is
         * simply the negative gradient.
         */

        /* Calculate the new direction in p, and the gradient in this direction, gpa */
        rvec       *pm  = as_rvec_array(s_min->s.cg_p.data());
        const rvec *sfm = as_rvec_array(s_min->f.data());
        double      gpa = 0;
        int         gf  = 0;
        for (int i = 0; i < mdatoms->homenr; i++)
        {
            if (mdatoms->cFREEZE)
            {
                gf = mdatoms->cFREEZE[i];
            }
            for (m = 0; m < DIM; m++)
            {
                if (!inputrec->opts.nFreeze[gf][m])
                {
                    pm[i][m] = sfm[i][m] + beta*pm[i][m];
                    gpa     -= pm[i][m]*sfm[i][m];
                    /* f is negative gradient, thus the sign */
                }
                else
                {
                    pm[i][m] = 0;
                }
            }
        }

        /* Sum the gradient along the line across CPUs */
        if (PAR(cr))
        {
            gmx_sumd(1, &gpa, cr);
        }

        /* Calculate the norm of the search vector */
        get_f_norm_max(cr, &(inputrec->opts), mdatoms, pm, &pnorm, nullptr, nullptr);

        /* Just in case stepsize reaches zero due to numerical precision... */
        if (stepsize <= 0)
        {
            stepsize = inputrec->em_stepsize/pnorm;
        }

        /*
         * Double check the value of the derivative in the search direction.
         * If it is positive it must be due to the old information in the
         * CG formula, so just remove that and start over with beta=0.
         * This corresponds to a steepest descent step.
         */
        if (gpa > 0)
        {
            beta = 0;
            step--;   /* Don't count this step since we are restarting */
            continue; /* Go back to the beginning of the big for-loop */
        }

        /* Calculate minimum allowed stepsize, before the average (norm)
         * relative change in coordinate is smaller than precision
         */
        minstep = 0;
        for (int i = 0; i < mdatoms->homenr; i++)
        {
            for (m = 0; m < DIM; m++)
            {
                tmp = fabs(s_min->s.x[i][m]);
                if (tmp < 1.0)
                {
                    tmp = 1.0;
                }
                tmp      = pm[i][m]/tmp;
                minstep += tmp*tmp;
            }
        }
        /* Add up from all CPUs */
        if (PAR(cr))
        {
            gmx_sumd(1, &minstep, cr);
        }

        minstep = GMX_REAL_EPS/sqrt(minstep/(3*top_global->natoms));
carlocamilloni's avatar
carlocamilloni committed
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

        if (stepsize < minstep)
        {
            converged = TRUE;
            break;
        }

        /* Write coordinates if necessary */
        do_x = do_per_step(step, inputrec->nstxout);
        do_f = do_per_step(step, inputrec->nstfout);

        write_em_traj(fplog, cr, outf, do_x, do_f, nullptr,
                      top_global, inputrec, step,
                      s_min, state_global, observablesHistory);

        /* Take a step downhill.
         * In theory, we should minimize the function along this direction.
         * That is quite possible, but it turns out to take 5-10 function evaluations
         * for each line. However, we dont really need to find the exact minimum -
         * it is much better to start a new CG step in a modified direction as soon
         * as we are close to it. This will save a lot of energy evaluations.
         *
         * In practice, we just try to take a single step.
         * If it worked (i.e. lowered the energy), we increase the stepsize but
         * the continue straight to the next CG step without trying to find any minimum.
         * If it didn't work (higher energy), there must be a minimum somewhere between
         * the old position and the new one.
         *
         * Due to the finite numerical accuracy, it turns out that it is a good idea
         * to even accept a SMALL increase in energy, if the derivative is still downhill.
         * This leads to lower final energies in the tests I've done. / Erik
         */
        s_a->epot = s_min->epot;
        a         = 0.0;
        c         = a + stepsize; /* reference position along line is zero */

        if (DOMAINDECOMP(cr) && s_min->s.ddp_count < cr->dd->ddp_count)
        {
            em_dd_partition_system(fplog, step, cr, top_global, inputrec,
                                   s_min, top, mdAtoms, fr, vsite, constr,
                                   nrnb, wcycle);
        }

        /* Take a trial step (new coords in s_c) */
        do_em_step(cr, inputrec, mdatoms, fr->bMolPBC, s_min, c, &s_min->s.cg_p, s_c,
                   constr, top, nrnb, wcycle, -1);

        neval++;
        /* Calculate energy for the trial step */
        evaluate_energy(fplog, cr,
                        top_global, s_c, top,
                        inputrec, nrnb, wcycle, gstat,
                        vsite, constr, fcd, graph, mdAtoms, fr,
                        mu_tot, enerd, vir, pres, -1, FALSE);

        /* Calc derivative along line */
        const rvec *pc  = as_rvec_array(s_c->s.cg_p.data());
        const rvec *sfc = as_rvec_array(s_c->f.data());
        double      gpc = 0;
        for (int i = 0; i < mdatoms->homenr; i++)
        {
            for (m = 0; m < DIM; m++)
            {
                gpc -= pc[i][m]*sfc[i][m]; /* f is negative gradient, thus the sign */
            }
        }
        /* Sum the gradient along the line across CPUs */
        if (PAR(cr))
        {
            gmx_sumd(1, &gpc, cr);
        }

        /* This is the max amount of increase in energy we tolerate */
        tmp = sqrt(GMX_REAL_EPS)*fabs(s_a->epot);

        /* Accept the step if the energy is lower, or if it is not significantly higher
         * and the line derivative is still negative.
         */
        if (s_c->epot < s_a->epot || (gpc < 0 && s_c->epot < (s_a->epot + tmp)))
        {
            foundlower = TRUE;
            /* Great, we found a better energy. Increase step for next iteration
             * if we are still going down, decrease it otherwise
             */
            if (gpc < 0)
            {
                stepsize *= 1.618034; /* The golden section */
            }
            else
            {
                stepsize *= 0.618034; /* 1/golden section */
            }
        }
        else
        {
            /* New energy is the same or higher. We will have to do some work
             * to find a smaller value in the interval. Take smaller step next time!
             */
            foundlower = FALSE;
            stepsize  *= 0.618034;
        }




        /* OK, if we didn't find a lower value we will have to locate one now - there must
         * be one in the interval [a=0,c].
         * The same thing is valid here, though: Don't spend dozens of iterations to find
         * the line minimum. We try to interpolate based on the derivative at the endpoints,
         * and only continue until we find a lower value. In most cases this means 1-2 iterations.
         *
         * I also have a safeguard for potentially really pathological functions so we never
         * take more than 20 steps before we give up ...
         *
         * If we already found a lower value we just skip this step and continue to the update.
         */
        double gpb;
        if (!foundlower)
        {
            nminstep = 0;

            do
            {
                /* Select a new trial point.
                 * If the derivatives at points a & c have different sign we interpolate to zero,
                 * otherwise just do a bisection.
                 */
                if (gpa < 0 && gpc > 0)
                {
                    b = a + gpa*(a-c)/(gpc-gpa);
                }
                else
                {
                    b = 0.5*(a+c);
                }

                /* safeguard if interpolation close to machine accuracy causes errors:
                 * never go outside the interval
                 */
                if (b <= a || b >= c)
                {
                    b = 0.5*(a+c);
                }

                if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
                {
                    /* Reload the old state */
                    em_dd_partition_system(fplog, -1, cr, top_global, inputrec,
                                           s_min, top, mdAtoms, fr, vsite, constr,
                                           nrnb, wcycle);
                }

                /* Take a trial step to this new point - new coords in s_b */
                do_em_step(cr, inputrec, mdatoms, fr->bMolPBC, s_min, b, &s_min->s.cg_p, s_b,
                           constr, top, nrnb, wcycle, -1);

                neval++;
                /* Calculate energy for the trial step */
                evaluate_energy(fplog, cr,
                                top_global, s_b, top,
                                inputrec, nrnb, wcycle, gstat,
                                vsite, constr, fcd, graph, mdAtoms, fr,
                                mu_tot, enerd, vir, pres, -1, FALSE);

                /* p does not change within a step, but since the domain decomposition
                 * might change, we have to use cg_p of s_b here.
                 */
                const rvec *pb  = as_rvec_array(s_b->s.cg_p.data());
                const rvec *sfb = as_rvec_array(s_b->f.data());
                gpb             = 0;
                for (int i = 0; i < mdatoms->homenr; i++)
                {
                    for (m = 0; m < DIM; m++)
                    {
                        gpb -= pb[i][m]*sfb[i][m]; /* f is negative gradient, thus the sign */
                    }
                }
                /* Sum the gradient along the line across CPUs */
                if (PAR(cr))
                {
                    gmx_sumd(1, &gpb, cr);
                }

                if (debug)
                {
                    fprintf(debug, "CGE: EpotA %f EpotB %f EpotC %f gpb %f\n",
                            s_a->epot, s_b->epot, s_c->epot, gpb);
                }

                epot_repl = s_b->epot;

                /* Keep one of the intervals based on the value of the derivative at the new point */
                if (gpb > 0)
                {
                    /* Replace c endpoint with b */
                    swap_em_state(&s_b, &s_c);
                    c   = b;
                    gpc = gpb;
                }
                else
                {
                    /* Replace a endpoint with b */
                    swap_em_state(&s_b, &s_a);
                    a   = b;
                    gpa = gpb;
                }

                /*
                 * Stop search as soon as we find a value smaller than the endpoints.
                 * Never run more than 20 steps, no matter what.
                 */
                nminstep++;
            }
            while ((epot_repl > s_a->epot || epot_repl > s_c->epot) &&
                   (nminstep < 20));

            if (fabs(epot_repl - s_min->epot) < fabs(s_min->epot)*GMX_REAL_EPS ||
                nminstep >= 20)
            {
                /* OK. We couldn't find a significantly lower energy.
                 * If beta==0 this was steepest descent, and then we give up.
                 * If not, set beta=0 and restart with steepest descent before quitting.
                 */
                if (beta == 0.0)
                {
                    /* Converged */
                    converged = TRUE;
                    break;
                }
                else
                {
                    /* Reset memory before giving up */
                    beta = 0.0;
                    continue;
                }
            }

            /* Select min energy state of A & C, put the best in B.
             */
            if (s_c->epot < s_a->epot)
            {
                if (debug)
                {
                    fprintf(debug, "CGE: C (%f) is lower than A (%f), moving C to B\n",
                            s_c->epot, s_a->epot);
                }
                swap_em_state(&s_b, &s_c);
                gpb = gpc;
            }
            else
            {
                if (debug)
                {
                    fprintf(debug, "CGE: A (%f) is lower than C (%f), moving A to B\n",
                            s_a->epot, s_c->epot);
                }
                swap_em_state(&s_b, &s_a);
                gpb = gpa;
            }

        }
        else
        {
            if (debug)
            {
                fprintf(debug, "CGE: Found a lower energy %f, moving C to B\n",
                        s_c->epot);
            }
            swap_em_state(&s_b, &s_c);
            gpb = gpc;
        }

        /* new search direction */
        /* beta = 0 means forget all memory and restart with steepest descents. */
        if (nstcg && ((step % nstcg) == 0))
        {
            beta = 0.0;
        }
        else
        {
            /* s_min->fnorm cannot be zero, because then we would have converged
             * and broken out.
             */

            /* Polak-Ribiere update.
             * Change to fnorm2/fnorm2_old for Fletcher-Reeves
             */
            beta = pr_beta(cr, &inputrec->opts, mdatoms, top_global, s_min, s_b);
        }
        /* Limit beta to prevent oscillations */
        if (fabs(beta) > 5.0)
        {
            beta = 0.0;
        }


        /* update positions */
        swap_em_state(&s_min, &s_b);
        gpa = gpb;

        /* Print it if necessary */
        if (MASTER(cr))
        {
            if (mdrunOptions.verbose)
            {
                double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
                fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
                        step, s_min->epot, s_min->fnorm/sqrtNumAtoms,
                        s_min->fmax, s_min->a_fmax+1);
                fflush(stderr);
            }
            /* Store the new (lower) energies */
            upd_mdebin(mdebin, FALSE, FALSE, (double)step,
                       mdatoms->tmass, enerd, &s_min->s, inputrec->fepvals, inputrec->expandedvals, s_min->s.box,
                       nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);

            do_log = do_per_step(step, inputrec->nstlog);
            do_ene = do_per_step(step, inputrec->nstenergy);

            /* Prepare IMD energy record, if bIMD is TRUE. */
            IMD_fill_energy_record(inputrec->bIMD, inputrec->imd, enerd, step, TRUE);

            if (do_log)
            {
                print_ebin_header(fplog, step, step);
            }
            print_ebin(mdoutf_get_fp_ene(outf), do_ene, FALSE, FALSE,
                       do_log ? fplog : nullptr, step, step, eprNORMAL,
                       mdebin, fcd, &(top_global->groups), &(inputrec->opts), nullptr);
        }

        /* Send energies and positions to the IMD client if bIMD is TRUE. */
        if (MASTER(cr) && do_IMD(inputrec->bIMD, step, cr, TRUE, state_global->box, as_rvec_array(state_global->x.data()), inputrec, 0, wcycle))
carlocamilloni's avatar
carlocamilloni committed
        {
            IMD_send_positions(inputrec->imd);
        }

        /* Stop when the maximum force lies below tolerance.
         * If we have reached machine precision, converged is already set to true.
         */
        converged = converged || (s_min->fmax < inputrec->em_tol);

    }   /* End of the loop */

    /* IMD cleanup, if bIMD is TRUE. */
    IMD_finalize(inputrec->bIMD, inputrec->imd);

    if (converged)
    {
        step--; /* we never took that last step in this case */

    }
    if (s_min->fmax > inputrec->em_tol)
    {
        if (MASTER(cr))
        {
            warn_step(stderr, inputrec->em_tol, step-1 == number_steps, FALSE);
            warn_step(fplog, inputrec->em_tol, step-1 == number_steps, FALSE);
        }
        converged = FALSE;
    }

    if (MASTER(cr))
    {
        /* If we printed energy and/or logfile last step (which was the last step)
         * we don't have to do it again, but otherwise print the final values.
         */
        if (!do_log)
        {
            /* Write final value to log since we didn't do anything the last step */
            print_ebin_header(fplog, step, step);
        }
        if (!do_ene || !do_log)
        {
            /* Write final energy file entries */
            print_ebin(mdoutf_get_fp_ene(outf), !do_ene, FALSE, FALSE,
                       !do_log ? fplog : nullptr, step, step, eprNORMAL,
                       mdebin, fcd, &(top_global->groups), &(inputrec->opts), nullptr);
        }
    }

    /* Print some stuff... */
    if (MASTER(cr))
    {
        fprintf(stderr, "\nwriting lowest energy coordinates.\n");
    }

    /* IMPORTANT!
     * For accurate normal mode calculation it is imperative that we
     * store the last conformation into the full precision binary trajectory.
     *
     * However, we should only do it if we did NOT already write this step
     * above (which we did if do_x or do_f was true).
     */
    /* Note that with 0 < nstfout != nstxout we can end up with two frames
     * in the trajectory with the same step number.
     */
carlocamilloni's avatar
carlocamilloni committed
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
    do_x = !do_per_step(step, inputrec->nstxout);
    do_f = (inputrec->nstfout > 0 && !do_per_step(step, inputrec->nstfout));

    write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm),
                  top_global, inputrec, step,
                  s_min, state_global, observablesHistory);


    if (MASTER(cr))
    {
        double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
        print_converged(stderr, CG, inputrec->em_tol, step, converged, number_steps,
                        s_min, sqrtNumAtoms);
        print_converged(fplog, CG, inputrec->em_tol, step, converged, number_steps,
                        s_min, sqrtNumAtoms);

        fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
    }

    finish_em(cr, outf, walltime_accounting, wcycle);

    /* To print the actual number of steps we needed somewhere */
    walltime_accounting_set_nsteps_done(walltime_accounting, step);

    return 0;
}   /* That's all folks */


/*! \brief Do L-BFGS conjugate gradients minimization
    \copydoc integrator_t(FILE *fplog, t_commrec *cr, const gmx::MDLogger &mdlog,
                          int nfile, const t_filenm fnm[],
                          const gmx_output_env_t *oenv,
                          const MdrunOptions &mdrunOptions,
                          gmx_vsite_t *vsite, gmx_constr_t constr,
                          gmx::IMDOutputProvider *outputProvider,
                          t_inputrec *inputrec,
                          gmx_mtop_t *top_global, t_fcdata *fcd,
                          t_state *state_global,
                          gmx::MDAtoms *mdAtoms,
                          t_nrnb *nrnb, gmx_wallcycle_t wcycle,
                          gmx_edsam_t ed,
                          t_forcerec *fr,
                          const ReplicaExchangeParameters &replExParams,
                          gmx_membed_t gmx_unused *membed,
                          gmx_walltime_accounting_t walltime_accounting)
 */
double do_lbfgs(FILE *fplog, t_commrec *cr, const gmx::MDLogger gmx_unused &mdlog,
                int nfile, const t_filenm fnm[],
                const gmx_output_env_t gmx_unused *oenv,
                const MdrunOptions &mdrunOptions,
                gmx_vsite_t *vsite, gmx_constr_t constr,
                gmx::IMDOutputProvider *outputProvider,
                t_inputrec *inputrec,
                gmx_mtop_t *top_global, t_fcdata *fcd,
                t_state *state_global,
                ObservablesHistory *observablesHistory,
                gmx::MDAtoms *mdAtoms,
                t_nrnb *nrnb, gmx_wallcycle_t wcycle,
                t_forcerec *fr,
                const ReplicaExchangeParameters gmx_unused &replExParams,
                gmx_membed_t gmx_unused *membed,
                gmx_walltime_accounting_t walltime_accounting)
{
    static const char *LBFGS = "Low-Memory BFGS Minimizer";
    em_state_t         ems;
    gmx_localtop_t    *top;
    gmx_enerdata_t    *enerd;
    gmx_global_stat_t  gstat;
    t_graph           *graph;
    int                ncorr, nmaxcorr, point, cp, neval, nminstep;
    double             stepsize, step_taken, gpa, gpb, gpc, tmp, minstep;
    real              *rho, *alpha, *p, *s, **dx, **dg;
    real               a, b, c, maxdelta, delta;
    real               diag, Epot0;
    real               dgdx, dgdg, sq, yr, beta;
    t_mdebin          *mdebin;
    gmx_bool           converged;
    rvec               mu_tot;
    gmx_bool           do_log, do_ene, do_x, do_f, foundlower, *frozen;
    tensor             vir, pres;
    int                start, end, number_steps;
    gmx_mdoutf_t       outf;
    int                i, k, m, n, gf, step;
    int                mdof_flags;
    auto               mdatoms = mdAtoms->mdatoms();

    if (PAR(cr))
    {
        gmx_fatal(FARGS, "Cannot do parallel L-BFGS Minimization - yet.\n");
    }

    if (nullptr != constr)
    {
        gmx_fatal(FARGS, "The combination of constraints and L-BFGS minimization is not implemented. Either do not use constraints, or use another minimizer (e.g. steepest descent).");
    }

    n        = 3*state_global->natoms;
    nmaxcorr = inputrec->nbfgscorr;

    snew(frozen, n);

    snew(p, n);
    snew(rho, nmaxcorr);
    snew(alpha, nmaxcorr);

    snew(dx, nmaxcorr);
    for (i = 0; i < nmaxcorr; i++)
    {
        snew(dx[i], n);
    }

    snew(dg, nmaxcorr);
    for (i = 0; i < nmaxcorr; i++)
    {
        snew(dg[i], n);
    }

    step  = 0;
    neval = 0;

    /* Init em */
    init_em(fplog, LBFGS, cr, outputProvider, inputrec, mdrunOptions,
            state_global, top_global, &ems, &top,
            nrnb, mu_tot, fr, &enerd, &graph, mdAtoms, &gstat,
            vsite, constr, nullptr,
            nfile, fnm, &outf, &mdebin, wcycle);

    start = 0;
    end   = mdatoms->homenr;

    /* We need 4 working states */
    em_state_t  s0 {}, s1 {}, s2 {}, s3 {};
    em_state_t *sa   = &s0;
    em_state_t *sb   = &s1;
    em_state_t *sc   = &s2;
    em_state_t *last = &s3;
    /* Initialize by copying the state from ems (we could skip x and f here) */
    *sa              = ems;
    *sb              = ems;
    *sc              = ems;

    /* Print to log file */
    print_em_start(fplog, cr, walltime_accounting, wcycle, LBFGS);

    do_log = do_ene = do_x = do_f = TRUE;

    /* Max number of steps */
    number_steps = inputrec->nsteps;

    /* Create a 3*natoms index to tell whether each degree of freedom is frozen */
    gf = 0;
    for (i = start; i < end; i++)
    {
        if (mdatoms->cFREEZE)
        {
            gf = mdatoms->cFREEZE[i];
        }
        for (m = 0; m < DIM; m++)
        {
            frozen[3*i+m] = inputrec->opts.nFreeze[gf][m];
        }
    }
    if (MASTER(cr))
    {
        sp_header(stderr, LBFGS, inputrec->em_tol, number_steps);
    }
    if (fplog)
    {
        sp_header(fplog, LBFGS, inputrec->em_tol, number_steps);
    }

    if (vsite)
    {
        construct_vsites(vsite, as_rvec_array(state_global->x.data()), 1, nullptr,
                         top->idef.iparams, top->idef.il,
                         fr->ePBC, fr->bMolPBC, cr, state_global->box);
    }

    /* Call the force routine and some auxiliary (neighboursearching etc.) */
    /* do_force always puts the charge groups in the box and shifts again
     * We do not unshift, so molecules are always whole
     */
    neval++;
    evaluate_energy(fplog, cr,
                    top_global, &ems, top,
                    inputrec, nrnb, wcycle, gstat,
                    vsite, constr, fcd, graph, mdAtoms, fr,
                    mu_tot, enerd, vir, pres, -1, TRUE);
    where();

    if (MASTER(cr))
    {
        /* Copy stuff to the energy bin for easy printing etc. */
        upd_mdebin(mdebin, FALSE, FALSE, (double)step,
                   mdatoms->tmass, enerd, state_global, inputrec->fepvals, inputrec->expandedvals, state_global->box,
                   nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);

        print_ebin_header(fplog, step, step);
        print_ebin(mdoutf_get_fp_ene(outf), TRUE, FALSE, FALSE, fplog, step, step, eprNORMAL,
                   mdebin, fcd, &(top_global->groups), &(inputrec->opts), nullptr);
    }
    where();

    /* Set the initial step.
     * since it will be multiplied by the non-normalized search direction
     * vector (force vector the first time), we scale it by the
     * norm of the force.
     */

    if (MASTER(cr))
    {
        double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
        fprintf(stderr, "Using %d BFGS correction steps.\n\n", nmaxcorr);
        fprintf(stderr, "   F-max             = %12.5e on atom %d\n", ems.fmax, ems.a_fmax + 1);
        fprintf(stderr, "   F-Norm            = %12.5e\n", ems.fnorm/sqrtNumAtoms);
        fprintf(stderr, "\n");
        /* and copy to the log file too... */
        fprintf(fplog, "Using %d BFGS correction steps.\n\n", nmaxcorr);
        fprintf(fplog, "   F-max             = %12.5e on atom %d\n", ems.fmax, ems.a_fmax + 1);
        fprintf(fplog, "   F-Norm            = %12.5e\n", ems.fnorm/sqrtNumAtoms);
        fprintf(fplog, "\n");
    }

    // Point is an index to the memory of search directions, where 0 is the first one.
    point = 0;

    // Set initial search direction to the force (-gradient), or 0 for frozen particles.
    real *fInit = static_cast<real *>(as_rvec_array(ems.f.data())[0]);
    for (i = 0; i < n; i++)
    {
        if (!frozen[i])
        {
            dx[point][i] = fInit[i]; /* Initial search direction */
        }
        else
        {
            dx[point][i] = 0;
        }
    }

    // Stepsize will be modified during the search, and actually it is not critical
    // (the main efficiency in the algorithm comes from changing directions), but
    // we still need an initial value, so estimate it as the inverse of the norm
    // so we take small steps where the potential fluctuates a lot.
    stepsize  = 1.0/ems.fnorm;

    /* Start the loop over BFGS steps.
     * Each successful step is counted, and we continue until
     * we either converge or reach the max number of steps.
     */

    ncorr = 0;

    /* Set the gradient from the force */
    converged = FALSE;
    for (step = 0; (number_steps < 0 || step <= number_steps) && !converged; step++)
    {

        /* Write coordinates if necessary */
        do_x = do_per_step(step, inputrec->nstxout);
        do_f = do_per_step(step, inputrec->nstfout);

        mdof_flags = 0;
        if (do_x)
        {
            mdof_flags |= MDOF_X;
        }

        if (do_f)
        {
            mdof_flags |= MDOF_F;
        }

        if (inputrec->bIMD)
        {
            mdof_flags |= MDOF_IMD;
        }

        mdoutf_write_to_trajectory_files(fplog, cr, outf, mdof_flags,
                                         top_global, step, (real)step, &ems.s, state_global, observablesHistory, ems.f);

        /* Do the linesearching in the direction dx[point][0..(n-1)] */

        /* make s a pointer to current search direction - point=0 first time we get here */
        s = dx[point];

        real *xx = static_cast<real *>(as_rvec_array(ems.s.x.data())[0]);
        real *ff = static_cast<real *>(as_rvec_array(ems.f.data())[0]);

        // calculate line gradient in position A
        for (gpa = 0, i = 0; i < n; i++)
        {
            gpa -= s[i]*ff[i];
        }

        /* Calculate minimum allowed stepsize along the line, before the average (norm)
         * relative change in coordinate is smaller than precision
         */
        for (minstep = 0, i = 0; i < n; i++)
        {
            tmp = fabs(xx[i]);
            if (tmp < 1.0)
            {
                tmp = 1.0;
            }
            tmp      = s[i]/tmp;
            minstep += tmp*tmp;
        }
        minstep = GMX_REAL_EPS/sqrt(minstep/n);

        if (stepsize < minstep)
        {
            converged = TRUE;
            break;
        }

        // Before taking any steps along the line, store the old position
        *last       = ems;
        real *lastx = static_cast<real *>(as_rvec_array(last->s.x.data())[0]);
        real *lastf = static_cast<real *>(as_rvec_array(last->f.data())[0]);
        Epot0       = ems.epot;

        *sa         = ems;

        /* Take a step downhill.
         * In theory, we should find the actual minimum of the function in this
         * direction, somewhere along the line.
         * That is quite possible, but it turns out to take 5-10 function evaluations
         * for each line. However, we dont really need to find the exact minimum -
         * it is much better to start a new BFGS step in a modified direction as soon
         * as we are close to it. This will save a lot of energy evaluations.
         *
         * In practice, we just try to take a single step.
         * If it worked (i.e. lowered the energy), we increase the stepsize but
         * continue straight to the next BFGS step without trying to find any minimum,
         * i.e. we change the search direction too. If the line was smooth, it is
         * likely we are in a smooth region, and then it makes sense to take longer
         * steps in the modified search direction too.
         *
         * If it didn't work (higher energy), there must be a minimum somewhere between
         * the old position and the new one. Then we need to start by finding a lower
         * value before we change search direction. Since the energy was apparently
         * quite rough, we need to decrease the step size.
         *
         * Due to the finite numerical accuracy, it turns out that it is a good idea
         * to accept a SMALL increase in energy, if the derivative is still downhill.
         * This leads to lower final energies in the tests I've done. / Erik
         */

        // State "A" is the first position along the line.
        // reference position along line is initially zero
        a          = 0.0;

        // Check stepsize first. We do not allow displacements
        // larger than emstep.
        //
        do
        {
            // Pick a new position C by adding stepsize to A.
            c        = a + stepsize;

            // Calculate what the largest change in any individual coordinate
            // would be (translation along line * gradient along line)
            maxdelta = 0;
            for (i = 0; i < n; i++)
            {
                delta = c*s[i];
                if (delta > maxdelta)
                {
                    maxdelta = delta;
                }
            }