Newer
Older
/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(see the PEOPLE file at the root of the distribution for a list of names)
This file is part of plumed, version 2.
plumed is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
plumed is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with plumed. If not, see <http://www.gnu.org/licenses/>.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
#include <iostream>
#include <complex>
#include "ActionWithInputGrid.h"
#include "core/ActionRegister.h"
#ifdef __PLUMED_HAS_FFTW
#endif
namespace PLMD {
namespace gridtools {
//+PLUMEDOC GRIDANALYSIS FOURIER_TRANSFORM
Gareth Tribello
committed
Compute the Discrete Fourier Transform (DFT) by means of FFTW of data stored on a 2D grid.
This action can operate on any other action that outputs scalar data on a two-dimensional grid.
Up to now, even if the input data are purely real the action uses a complex DFT.
Just as a quick reference, given a 1D array \f$\mathbf{X}\f$ of size \f$n\f$, this action computes the vector \f$\mathbf{Y}\f$ given by
\f[
Gareth Tribello
committed
Y_k = \sum_{j=0}^{n-1} X_j e^{2\pi\, j k \sqrt{-1}/n}.
\f]
This can be easily extended to more than one dimension. All the other details can be found at http://www.fftw.org/doc/What-FFTW-Really-Computes.html#What-FFTW-Really-Computes.
The keyword "FOURIER_PARAMETERS" deserves just a note on the usage. This keyword specifies how the Fourier transform will be normalized. The keyword takes two numerical parameters (\f$a,\,b\f$) that define the normalization according to the following expression
\f[
Gareth Tribello
committed
\frac{1}{n^{(1-a)/2}} \sum_{j=0}^{n-1} X_j e^{2\pi b\, j k \sqrt{-1}/n}
\f]
The default values of these parameters are: \f$a=1\f$ and \f$b=1\f$.
\par Examples
The following example tells Plumed to compute the complex 2D 'backward' Discrete Fourier Transform by taking the data saved on a grid called 'density', and normalizing the output by \f$ \frac{1}{\sqrt{N_x\, N_y}}\f$, where \f$N_x\f$ and \f$N_y\f$ are the number of data on the grid (it can be the case that \f$N_x\neq N_y\f$):
Gareth Tribello
committed
FOURIER_TRANSFORM STRIDE=1 GRID=density FT_TYPE=complex FOURIER_PARAMETERS=0,-1
*/
//+ENDPLUMEDOC
class FourierTransform : public ActionWithInputGrid {
private:
std::string output_type;
bool real_output, store_norm;
std::vector<int> fourier_params;
public:
static void registerKeywords( Keywords& keys );
explicit FourierTransform(const ActionOptions&ao);
void clearAverage();
#ifndef __PLUMED_HAS_FFTW
void performOperations( const bool& from_update ) {}
#else
void performOperations( const bool& from_update );
#endif
void compute( const unsigned&, MultiValue& ) const {}
bool isPeriodic() { return false; }
};
PLUMED_REGISTER_ACTION(FourierTransform,"FOURIER_TRANSFORM")
void FourierTransform::registerKeywords( Keywords& keys ) {
ActionWithInputGrid::registerKeywords( keys ); keys.remove("BANDWIDTH"); keys.remove("KERNEL");
Gareth Tribello
committed
keys.add("optional","FT_TYPE","choose what kind of data you want as output on the grid. Possible values are: ABS = compute the complex modulus of Fourier coefficients (DEFAULT); NORM = compute the norm (i.e. ABS^2) of Fourier coefficients; COMPLEX = store the FFTW complex output on the grid (as a vector).");
keys.add("compulsory","FOURIER_PARAMETERS","default","what kind of normalization is applied to the output and if the Fourier transform in FORWARD or BACKWARD. This keyword takes the form FOURIER_PARAMETERS=A,B, where A and B can be 0, 1 or -1. The default values are A=1 (no normalization at all) and B=1 (forward FFT). Other possible choices for A are: "
"A=-1: normalize by the number of data, "
"A=0: normalize by the square root of the number of data (one forward and followed by backward FFT recover the original data). ");
}
FourierTransform::FourierTransform(const ActionOptions&ao):
Action(ao),
ActionWithInputGrid(ao),
real_output(true),
store_norm(false),
fourier_params(2)
{
#ifndef __PLUMED_HAS_FFTW
error("this feature is only available if you compile PLUMED with FFTW");
#else
Gareth Tribello
committed
if( ingrid->getDimension()!=2 ) error("fourier transform currently only works with two dimensional grids");
Gareth Tribello
committed
// Get the type of FT
parse("FT_TYPE",output_type);
if (output_type.length()==0) {
log<<" keyword FT_TYPE unset. By default output grid will contain REAL Fourier coefficients\n";
} else if ( output_type=="ABS" || output_type=="abs") {
log << " keyword FT_TYPE is '"<< output_type << "' : will compute the MODULUS of Fourier coefficients\n";
} else if ( output_type=="NORM" || output_type=="norm") {
log << " keyword FT_TYPE is '"<< output_type << "' : will compute the NORM of Fourier coefficients\n";
store_norm=true;
} else if ( output_type=="COMPLEX" || output_type=="complex" ) {
log<<" keyword FT_TYPE is '"<< output_type <<"' : output grid will contain the COMPLEX Fourier coefficients\n";
real_output=false;
} else error("keyword FT_TYPE unrecognized!");
// Normalize output?
std::string params_str; parse("FOURIER_PARAMETERS",params_str);
if (params_str=="default") {
fourier_params.assign( fourier_params.size(), 1 );
log.printf(" default values of Fourier parameters A=%i, B=%i : the output will NOT be normalized and BACKWARD Fourier transform is computed \n", fourier_params[0],fourier_params[1]);
} else {
std::vector<std::string> fourier_str = Tools::getWords(params_str, "\t\n ,");
if (fourier_str.size()>2) error("FOURIER_PARAMETERS can take just two values");
for (unsigned i=0; i<fourier_str.size(); ++i) {
Tools::convert(fourier_str[i],fourier_params[i]);
if (fourier_params[i]>1 || fourier_params[i]<-1) error("values accepted for FOURIER_PARAMETERS are only -1, 1 or 0");
}
log.printf(" Fourier parameters are A=%i, B=%i \n", fourier_params[0],fourier_params[1]);
}
// Create the input from the old string
std::string vstring;
if (real_output) {
if (!store_norm) vstring="COMPONENTS=" + getLabel() + "_abs";
else vstring="COMPONENTS=" + getLabel() + "_norm";
} else vstring="COMPONENTS=" + getLabel() + "_real," + getLabel() + "_imag";
// Set COORDINATES keyword
vstring += " COORDINATES=" + ingrid->getComponentName( 0 );
for(unsigned i=1; i<ingrid->getDimension(); ++i) vstring += "," + ingrid->getComponentName( i );
// Set PBC keyword
vstring += " PBC=";
if( ingrid->isPeriodic(0) ) vstring+="T"; else vstring+="F";
for(unsigned i=1; i<ingrid->getDimension(); ++i) {
if( ingrid->isPeriodic(i) ) vstring+=",T"; else vstring+=",F";
// Create a grid on which to store the fourier transform of the input grid
auto grid=createGrid( "grid", vstring );
if( ingrid->noDerivatives() ) grid->setNoDerivatives();
setAveragingAction( std::move(grid), false );
checkRead();
#endif
}
void FourierTransform::clearAverage() {
std::vector<std::string> ft_min( ingrid->getMin() ), ft_max( ingrid->getMax() );
for(unsigned i=0; i<ingrid->getDimension(); ++i) {
Tools::convert( 0.0, ft_min[i] ); Tools::convert( 2.0*pi*ingrid->getNbin()[i]/ ingrid->getGridExtent(i), ft_max[i] );
}
mygrid->setBounds( ft_min, ft_max, ingrid->getNbin(), fspacing); resizeFunctions();
ActionWithAveraging::clearAverage();
}
#ifdef __PLUMED_HAS_FFTW
void FourierTransform::performOperations( const bool& from_update ) {
// Spacing of the real grid
std::vector<double> g_spacing ( ingrid->getGridSpacing() );
// *** CHECK CORRECT k-GRID BOUNDARIES ***
//log<<"Real grid boundaries: \n"
// <<" min_x: "<<mygrid->getMin()[0]<<" min_y: "<<mygrid->getMin()[1]<<"\n"
// <<" max_x: "<<mygrid->getMax()[0]<<" max_y: "<<mygrid->getMax()[1]<<"\n"
// <<"K-grid boundaries:"<<"\n"
// <<" min_x: "<<ft_min[0]<<" min_y: "<<ft_min[1]<<"\n"
// <<" max_x: "<<ft_max[0]<<" max_y: "<<ft_max[1]<<"\n";
// Get the size of the input data arrays (to allocate FFT data)
size_t fft_dimension=static_cast<size_t>( ingrid->getNumberOfPoints() );
for(unsigned i=0; i<N_input_data.size(); ++i) if( !ingrid->isPeriodic(i) ) N_input_data[i]++;
// size_t fft_dimension=1; for(unsigned i=0; i<N_input_data.size(); ++i) fft_dimension*=static_cast<size_t>( N_input_data[i] );
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// FFT arrays
std::vector<std::complex<double> > input_data(fft_dimension), fft_data(fft_dimension);
// Fill real input with the data on the grid
std::vector<unsigned> ind( ingrid->getDimension() );
for (unsigned i=0; i<ingrid->getNumberOfPoints(); ++i) {
// Get point indices
ingrid->getIndices(i, ind);
// Fill input data in row-major order
input_data[ind[0]*N_input_data[0]+ind[1]].real( getFunctionValue( i ) );
input_data[ind[0]*N_input_data[0]+ind[1]].imag( 0.0 );
}
// *** HERE is the only clear limitation: I'm computing explicitly a 2D FT. It should not happen to deal with other than two-dimensional grid ...
fftw_plan plan_complex = fftw_plan_dft_2d(N_input_data[0], N_input_data[1], reinterpret_cast<fftw_complex*>(&input_data[0]), reinterpret_cast<fftw_complex*>(&fft_data[0]), fourier_params[1], FFTW_ESTIMATE);
// Compute FT
fftw_execute( plan_complex );
// Compute the normalization constant
double norm=1.0;
for (unsigned i=0; i<N_input_data.size(); ++i) {
norm *= pow( N_input_data[i], (1-fourier_params[0])/2 );
}
// Save FT data to output grid
std::vector<unsigned> N_out_data ( mygrid->getNbin() );
std::vector<unsigned> out_ind ( mygrid->getDimension() );
for(unsigned i=0; i<mygrid->getNumberOfPoints(); ++i) {
mygrid->getIndices( i, out_ind );
if (real_output) {
double ft_value;
// Compute abs/norm and fix normalization
if (!store_norm) ft_value=std::abs( fft_data[out_ind[0]*N_out_data[0]+out_ind[1]] / norm );
else ft_value=std::norm( fft_data[out_ind[0]*N_out_data[0]+out_ind[1]] / norm );
// Set the value
mygrid->setGridElement( i, 0, ft_value );
} else {
double ft_value_real, ft_value_imag;
ft_value_real=fft_data[out_ind[0]*N_out_data[0]+out_ind[1]].real() / norm;
ft_value_imag=fft_data[out_ind[0]*N_out_data[0]+out_ind[1]].imag() / norm;
// Set values
mygrid->setGridElement( i, 0, ft_value_real);
mygrid->setGridElement( i, 1, ft_value_imag);
}
// Free FFTW stuff
fftw_destroy_plan(plan_complex);
}
#endif
} // end namespace 'gridtools'
} // end namespace 'PLMD'