Newer
Older
# ============================================================================================= #
# Author: Pavel Iakubovskii, ZFTurbo, ashawkey, Dominik Müller, #
# Copyright: albumentations: : https://github.com/albumentations-team #
# Pavel Iakubovskii : https://github.com/qubvel #
# ZFTurbo : https://github.com/ZFTurbo #
# ashawkey : https://github.com/ashawkey #
# Dominik Müller : https://github.com/muellerdo #
# Lucia Hradecká : lucia.d.hradecka@gmail.com #
# Filip Lux : lux.filip@gmail.com #
# #
# Volumentations History: #
# - Original: https://github.com/albumentations-team/albumentations #
# - 3D Conversion: https://github.com/ashawkey/volumentations #
# - Continued Development: https://github.com/ZFTurbo/volumentations #
# - Enhancements: https://github.com/qubvel/volumentations #
# - Further Enhancements: https://github.com/muellerdo/volumentations #
# - Biomedical Enhancements: https://gitlab.fi.muni.cz/cbia/bio-volumentations #
# #
# MIT License. #
# #
# Permission is hereby granted, free of charge, to any person obtaining a copy #
# of this software and associated documentation files (the "Software"), to deal #
# in the Software without restriction, including without limitation the rights #
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #
# copies of the Software, and to permit persons to whom the Software is #
# furnished to do so, subject to the following conditions: #
# #
# The above copyright notice and this permission notice shall be included in all #
# copies or substantial portions of the Software. #
# #
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #
# SOFTWARE. #
# ============================================================================================= #
import numpy as np
import skimage.transform as skt
from skimage.exposure import equalize_hist
from scipy.ndimage import gaussian_filter
from ..biovol_typing import TypeTripletFloat, TypeSpatioTemporalCoordinate, TypeSextetInt, TypeSpatialShape
from .sitk_utils import get_affine_transform, apply_sitk_transform
"""
vol: [C, D, H, W (, T)]
you should give (D, H, W) form shape.
skimage interpolation notations:
order = 0: Nearest-Neighbor
order = 1: Bi-Linear (default)
order = 2: Bi-Quadratic
order = 3: Bi-Cubic
order = 4: Bi-Quartic
order = 5: Bi-Quintic
Interpolation behaves strangely when input of type int.
** Be sure to change volume and mask data type to float !!! ** (already done by Float() in compose - TODO not for int-mask)
But for parameters use primarily ints.
"""
# TODO parameter
# Anti-aliasing - gaussian filter to smooth. using automatically when downsampling, except when integer
# and interpolation is 0. (so mask)
# float mask - how, for now no gaussian filter.
def resize(img, input_new_shape, interpolation=1, border_mode='reflect', cval=0, mask=False,
anti_aliasing_downsample=True):
# TODO: random fix, check if it is correct
new_shape = list(input_new_shape)[:-1]
# Zero or negative check
for dimension in new_shape:
if dimension <= 0:
warn(f"Resize(): shape: {new_shape} contains zero or negative number, continuing without Resize.",
UserWarning)
return img
# shape check
if mask:
# too many or few dimensions of new_shape
if len(new_shape) < len(img.shape) - 1 or len(new_shape) > len(img.shape):
warn(f"Resize(): wrong parameter shape: {new_shape}," +
f"expecting something with dimensions of {img.shape} or {img.shape[0:-1]}, " +
"continuing without resizing ", UserWarning)
return img
# Adding time dimension
elif len(new_shape) == len(img.shape) - 1:
new_shape = np.append(new_shape, img.shape[-1])
else:
if len(new_shape) < len(img.shape[1:]) - 1 or len(new_shape) > len(img.shape[1:]):
warn(f"Resize(): wrong dimensions of shape: {new_shape}," +
f"expecting something with dimensions of {img.shape[1:]} or {img.shape[1:-1]}, continuing " +
"without resizing ", UserWarning)
return img
# adding time dimension
elif len(new_shape) == len(img.shape[1:]) - 1:
new_shape = np.append(new_shape, img.shape[-1])
anti_aliasing = False
if mask:
new_img = skt.resize(
img,
new_shape,
order=interpolation,
mode=border_mode,
cval=cval,
clip=True,
anti_aliasing=anti_aliasing
)
return new_img
if anti_aliasing_downsample and np.any(np.array(img.shape[1:]) < np.array(new_shape)):
anti_aliasing = True
data = []
for i in range(img.shape[0]):
subimg = img[i].copy()
d0 = skt.resize(
subimg,
new_shape,
order=interpolation,
mode=border_mode,
cval=cval,
clip=True,
anti_aliasing=anti_aliasing
)
data.append(d0.copy())
new_img = np.stack(data, axis=0)
def resize_keypoints(keypoints,
domain_limit: TypeSpatioTemporalCoordinate,
new_shape: TypeSpatioTemporalCoordinate):
assert len(domain_limit) == len(new_shape) == 4
# for each dim compute ratio
ratio = np.array(new_shape[:3]) / np.array(domain_limit[:3])
# it supposes that length of keypoint is 3
return [keypoint * ratio for keypoint in keypoints]
def affine(img: np.array,
degrees: TypeTripletFloat = (0, 0, 0),
scales: TypeTripletFloat = (1, 1, 1),
translation: TypeTripletFloat = (0, 0, 0),
border_mode: str = 'constant',
value: float = 0,
spacing: TypeTripletFloat = (1, 1, 1)):
"""
img (np.array) : format (channel, ax1, ax2, ax3, [time])
"""
shape = img.shape[1:]
transform = get_affine_transform(shape,
scales=scales,
degrees=degrees,
translation=translation,
spacing=spacing)
return apply_sitk_transform(img,
sitk_transform=transform,
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def affine_keypoints(keypoints: list,
domain_limit: TypeSpatioTemporalCoordinate,
degrees: TypeTripletFloat = (0, 0, 0),
scales: TypeTripletFloat = (1, 1, 1),
translation: TypeTripletFloat = (0, 0, 0),
border_mode: str = 'constant',
keep_all: bool = False,
spacing: TypeTripletFloat = (1, 1, 1)):
"""
Args:
keypoints: list of input keypoints
domain_limit: limit of the domain, there keyp-points can appear, it is used to define center of transforms
and to filter out output key-point from the outside of the domain
degrees:
scales:
translation:
border_mode: not used
keep_all: True to keep also key_point frou poutside the domain
spacing: relative voxel size
Returns: list of transformed key-points
"""
transform = get_affine_transform(domain_limit,
scales=scales,
degrees=degrees,
translation=translation,
spacing=spacing)
transform = transform.GetInverse()
res = []
for point in keypoints:
transformed_point = transform.TransformPoint(point)
if keep_all or is_included(domain_limit, transformed_point):
res.append(transformed_point)
return res
# Used in rot90_keypoints
def flip_keypoints(keypoints, axes, img_shape):
# all values in axes are in [1, 2, 3]
assert np.all(np.array([ax in [1, 2, 3] for ax in axes])), f'{axes} does not contain values from [1, 2, 3]'
mult, add = np.ones(3, int), np.zeros(3, int)
for ax in axes:
mult[ax-1] = -1
add[ax-1] = img_shape[ax-1] - 1
res = []
for k in keypoints:
flipped = list(np.array(k[:3]) * mult + add)
if len(k) == 4:
flipped.append(k[-1])
res.append(tuple(flipped))
return res
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Used in rot90_keypoints
def transpose_keypoints(keypoints, ax1, ax2):
# all values in axes are in [1, 2, 3]
assert (ax1 in [1, 2, 3]) and (ax2 in [1, 2, 3]), f'[{ax1} {ax2}] does not contain values from [1, 2, 3]'
res = []
for k in keypoints:
k = list(k)
k[ax1-1], k[ax2-1] = k[ax2-1], k[ax1-1]
res.append(tuple(k))
return res
def rot90_keypoints(keypoints, factor, axes, img_shape):
if factor == 1:
keypoints = flip_keypoints(keypoints, [axes[1]], img_shape)
keypoints = transpose_keypoints(keypoints, axes[0], axes[1])
elif factor == 2:
keypoints = flip_keypoints(keypoints, axes, img_shape)
elif factor == 3:
keypoints = transpose_keypoints(keypoints, axes[0], axes[1])
keypoints = flip_keypoints(keypoints, [axes[1]], img_shape)
return keypoints
def pad_keypoints(keypoints, pad_size):
a, b, c, d, e, f = pad_size
res = []
for coo in keypoints:
padding = np.array((a, c, e)) if len(coo) == 3 else np.array((a, c, e, 0))
res.append(coo + padding)
return res
def pad_pixels(img, input_pad_width: TypeSextetInt, border_mode, cval, mask=False):
a, b, c, d, e, f = input_pad_width
pad_width = [(a, b), (c, d), (e, f)]
# zeroes for channel dimension
if not mask:
pad_width = [(0, 0)] + pad_width
# zeroes for temporal dimension
if len(img.shape) == 5: # if len(img.shape) > len(pad_width):
assert len(img.shape) == len(pad_width)
if border_mode == "constant":
return np.pad(img, pad_width, border_mode, constant_values=cval)
if border_mode == "linear_ramp":
return np.pad(img, pad_width, border_mode, end_values=cval)
return np.pad(img, pad_width, border_mode)
# Used in crop()
def get_spatial_shape(array: np.array, mask: bool) -> TypeSpatialShape:
return np.array(array.shape)[:3] if mask else np.array(array.shape)[1:4]
# Used in crop()
def get_pad_dims(spatial_shape: TypeSpatialShape, crop_shape: TypeSpatialShape) -> TypeSextetInt:
pad_dims = [0] * 6
for i in range(3):
i_dim, c_dim = spatial_shape[i], crop_shape[i]
current_pad_dims = (0, 0)
if i_dim < c_dim:
pad_size = c_dim - i_dim
if pad_size % 2 != 0:
current_pad_dims = (int(pad_size // 2 + 1), int(pad_size // 2))
current_pad_dims = (int(pad_size // 2), int(pad_size // 2))
pad_dims[i * 2:(i + 1) * 2] = current_pad_dims
return tuple(pad_dims)
def crop(input_array: np.array,
crop_shape: TypeSpatialShape,
crop_position: TypeSpatialShape,
pad_dims,
border_mode, cval, mask):
input_spatial_shape = get_spatial_shape(input_array, mask)
if np.any(input_spatial_shape < crop_shape):
warn(f'F.crop(): Input size {input_spatial_shape} smaller than crop size {crop_shape}, pad by {border_mode}.',
UserWarning)
# pad
input_array = pad_pixels(input_array, pad_dims, border_mode, cval, mask)
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# test
input_spatial_shape = get_spatial_shape(input_array, mask)
assert np.all(input_spatial_shape >= crop_shape)
x1, y1, z1 = crop_position
x2, y2, z2 = np.array(crop_position) + np.array(crop_shape)
if mask:
result = input_array[x1:x2, y1:y2, z1:z2]
assert np.all(result.shape[:3] == crop_shape), f'{result.shape} {crop_shape} {mask} {crop_position}'
else:
result = input_array[:, x1:x2, y1:y2, z1:z2]
assert np.all(result.shape[1:4] == crop_shape)
return result
def crop_keypoints(keypoints,
crop_shape: TypeSpatialShape,
crop_position: TypeSpatialShape,
pad_dims,
keep_all: bool):
(px, _), (py, _), (pz, _) = pad_dims
pad = np.array((px, py, pz))
res = []
for keypoint in keypoints:
k = keypoint[:3] - crop_position + pad
if keep_all or (np.all(k >= 0) and np.all((k + .5) < crop_shape)):
res.append(k)
return res
def gaussian_blur(img, input_sigma, border_mode, cval):
sigma = input_sigma
if isinstance(sigma, list):
if img.shape[0] != len(sigma):
warn(
f'GaussianBlur(): wrong list size {len(sigma)}, expecting same as number of dimensions {img.shape[0]}. Ignoring',
UserWarning)
return img
return gaussian_blur_stack(img, sigma, border_mode, cval)
if isinstance(sigma, (int, float)):
sigma = np.repeat(sigma, len(img.shape))
sigma[0] = 0
# Checking for time dimension
if len(img.shape) > 4:
sigma[-1] = 0
else:
# TODO what to expect in the input.
if len(sigma) == len(img.shape) - 2:
sigma = np.append(sigma, 0)
if len(sigma) == len(img.shape) - 1:
sigma = np.insert(sigma, 0, 0)
# TODO better warning
if len(sigma) != len(img.shape):
warn(f'GaussianBlur(): wrong sigma tuple, ignoring', UserWarning)
return img
return gaussian_filter(img, sigma=sigma, mode=border_mode, cval=cval)
def gaussian_blur_stack(img, input_sigma, border_mode, cval):
sigma = list(np.asarray(input_sigma).copy())
# simple sigma check
for channel in sigma:
if not isinstance(channel, (float, int, tuple)):
warn(f'GaussianBlur(): wrong sigma format, Inside list can be only tuple,float or int. Ignoring',
UserWarning)
return img
# TODO try different techniques for better optimalization.
for i in range(len(sigma)):
if isinstance(sigma[i], (float, int)):
sigma[i] = np.repeat(sigma[i], len(img.shape) - 1)
if len(sigma[i]) >= 4:
sigma[i][-1] = 0
else:
if len(sigma[i]) == len(img.shape) - 2:
sigma[i] = np.append(sigma[i], 0)
img[i] = gaussian_filter(img[i], sigma=sigma[i], mode=border_mode, cval=cval)
return img
# TODO clipped tag may be important for types other that float32, but tags are from fork and not tested
# @clipped
def brightness_contrast_adjust(img, alpha=1, beta=0):
if alpha != 1:
img *= alpha
if beta != 0:
img += beta
return img
def gamma_transform(img, gamma):
if np.all(img < 0) or np.all(img > 1) :
warn(f"Gamma transform: image is not in range [0,1]. continuing without transform", UserWarning)
return img
else:
return np.power(img, gamma)
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
def histogram_equalization(img, bins):
for i in range(img.shape[0]):
img[i] = equalize_hist(img[i], bins)
return img
def gaussian_noise(img, mean, sigma):
img = img.astype("float32")
noise = np.random.normal(mean, sigma, img.shape).astype(np.float32)
return img + noise
def poisson_noise(img, peak):
img = img.astype("float32")
return img + np.random.poisson(img).astype(np.float32)
def value_to_list(value, length):
if isinstance(value, (float, int)):
return [value for _ in range(length)]
else:
return value
def correct_length_list(list_to_check, length, value_to_fill=1, list_name="###Default###"):
if len(list_to_check) < length:
warn(f"{list_name} have elements {len(list_to_check)}, should be {length} appending {value_to_fill} " +
"till length matches", UserWarning)
for i in range(length - len(list_to_check)):
list_to_check = list_to_check + [value_to_fill]
if len(list_to_check) > length:
warn(f"{list_name} have elements {len(list_to_check)}, should be {length} removing elements from behind " +
" till length matches", UserWarning)
list_to_check = [list_to_check[i] for i in range(length)]
return list_to_check
# formula taken from
# https://stats.stackexchange.com/questions/46429/transform-data-to-desired-mean-and-standard-deviation
def normalize_channel(img, mean, std):
return (img - img.mean()) * (std / img.std()) + mean
def normalize(img, input_mean, input_std):
mean = value_to_list(input_mean, img.shape[0])
std = value_to_list(input_std, img.shape[0])
mean = correct_length_list(mean, img.shape[0], value_to_fill=0, list_name="mean")
std = correct_length_list(std, img.shape[0], value_to_fill=1, list_name="std")
for i in range(img.shape[0]):
img[i] = normalize_channel(img[i], mean[i], std[i])
return img
def normalize_mean_std(img, mean, denominator):
if len(mean.shape) == 0:
mean = mean[..., None]
if len(denominator.shape) == 0:
denominator = denominator[..., None]
new_axis = [i + 1 for i in range(len(img.shape) - 1)]
img -= np.expand_dims(mean, axis=new_axis)
img *= np.expand_dims(denominator, axis=new_axis)
return img