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Introduction
Vector Space Document Model

A class of document representations that encode documents in a

high-dimensional vector space:

A van pulled up outside a bank and three masked men got out.

A boy leapt from the bank into the cold water.

The classic IR vector space model is due to Salton et al. (1975).
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Introduction
Word Sense Disambiguation

In computational linguistics, word-sense disambiguation (WSD) refers
to the problem of identifying the sense in which a word was used:
e Avan pulled up outside a bank and three masked men got out.
e A boy leapt from the bank into the cold water.
One of the standard approaches is to perform clustering on the

vector-space representation of words (Anaya-Sanchez et al., 2006;
Rafael Berlanga LLavori, 2012).
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Introduction
The DisSim Algorithm

The following steps are repeated until a termination condition is met:

e A vector-space document model is constructed from a corpus.

e Individual words are represented by the vectors of their parent

documents. After clustering, each word is replaced with the
name of its cluster:

- Avan pulled up outside a bank, and three masked men got out.
- Aboy leapt from the bank, into the cold water.

e A new vector-space document model is constructed from the
updated documents.

It is expected that the diambiguated model will yield better results.
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Experimental Setup
Doc2vec, K-means, and Agglomerative Clustering

As the vector-space document model, the doc2vec algorithm by Le

et al. (2014) in the skip-gram variant as implemented in the Gensim
Python library was used. Semantically similar documents have been
empirically shown to form clusters in this model.

For clustering, we used:

e several variants of K-means, where K was the number of senses
of a word given by WordNet,

e agglomerative clustering using a linkage that minimizes the
variance of the clusters being merged (Ward Jr, 1963),

e anovel graph-theoretic algorithm based on the
authority-propagation algorithm of PageRank (Page et al., 1999).
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Experimental Setup
Training Corpus, Gold Standard, and Evaluation

As the training corpus, we used various a mixture of various corpora:

Aesop’s Fables, BBC news and sport news, book reviews from
amazon.com, Q&A from Yahoo! Answers, and articles from the
English Wikipedia.

As the gold standard, we used test data from the SemEval
competition. The test data consisted of 500 paragraph-sentence
pairs with human-assigned semantic similarity score.

To evaluate a model, we predicted the semantic similarity of every
test paragraph-sentence pair by computing cosine similarity between

the vector-space representations of the paragraph and the sentence.

Then we computed Pearson’s correlation coefficient F between the
human-assigned semantic similarity scores and the predictions.
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Results
Training Speed
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Results
Correlation Between Predictions and Gold Scores
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Discussion

e Compared to SemEval results, bare doc2vec model scores high.

- Avariant of this model won SemEval 2017.

e WordNet has been shown to overestimate the number of
meaningful word senses, reducing the quality of clustering.

e A gold standard and an evaluation metric tailored specifically
for WSD might yield better results.
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