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Introduction

Vector Space Document Model

A class of document representations that encode documents in a

high-dimensional vector space:

A boy leapt from the bank into the cold water.

A van pulled up outside a bank and three masked men got out.

The classic IR vector space model is due to Salton et al. (ƈƎƍƌ).
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Introduction

Word Sense Disambiguation

In computational linguistics, word-sense disambiguation (WSD) refers

to the problem of identifying the sense in which a word was used:

• A van pulled up outside a bank and three masked men got out.

• A boy leapt from the bank into the cold water.

One of the standard approaches is to perform clustering on the

vector-space representation of words (Anaya-Sánchez et al., ƉƇƇҚ;

Rafael Berlanga LLavori, ƉƇƈƉ).
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Introduction

The DisSim Algorithm

The following steps are repeated until a termination condition is met:

• A vector-space document model is constructed from a corpus.

• Individual words are represented by the vectors of their parent
documents. After clustering, each word is replaced with the

name of its cluster:

– A van pulled up outside a bank1 and three masked men got out.

– A boy leapt from the bank2 into the cold water.

• A new vector-space document model is constructed from the

updated documents.

It is expected that the diambiguated model will yield better results.
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Experimental Setup

Docƈvec, K-means, and Agglomerative Clustering

As the vector-space document model, the docƉvec algorithm by Le

et al. (ƉƇƈƋ) in the skip-gram variant as implemented in the Gensim

Python library was used. Semantically similar documents have been

empirically shown to form clusters in this model.

For clustering, we used:

• several variants of K-means, where K was the number of senses
of a word given by WordNet,

• agglomerative clustering using a linkage that minimizes the
variance of the clusters being merged (Ward Jr, ƈƎҚƊ),

• a novel graph-theoretic algorithm based on the

authority-propagation algorithm of PageRank (Page et al., ƈƎƎƎ).
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Experimental Setup

Training Corpus, Gold Standard, and Evaluation

As the training corpus, we used various a mixture of various corpora:

Aesop’s Fables, BBC news and sport news, book reviews from

amazon.com, Q&A from Yahoo! Answers, and articles from the

English Wikipedia.

As the gold standard, we used test data from the SemEval

competition. The test data consisted of ƌƇƇ paragraph-sentence

pairs with human-assigned semantic similarity score.

To evaluate a model, we predicted the semantic similarity of every

test paragraph-sentence pair by computing cosine similarity between

the vector-space representations of the paragraph and the sentence.

Then we computed Pearson’s correlation coefficient F between the

human-assigned semantic similarity scores and the predictions.
қ/ƈҚ
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Results

Training Speed
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Results

Correlation Between Predictions and Gold Scores
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Discussion

• Compared to SemEval results, bare docƉvec model scores high.

– A variant of this model won SemEval ƉƇƈƍ.

• WordNet has been shown to overestimate the number of
meaningful word senses, reducing the quality of clustering.

• A gold standard and an evaluation metric tailored specifically
for WSD might yield better results.
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