diff --git a/api/apps/conversation_app.py b/api/apps/conversation_app.py index 23db038e66fbd287547a906a5eae4ab715d85695..dbebc39ef8b5e6be85b9218b0b6cf8fda3a573d3 100644 --- a/api/apps/conversation_app.py +++ b/api/apps/conversation_app.py @@ -118,14 +118,13 @@ def message_fit_in(msg, max_length=4000): c = count() if c < max_length: return c, msg - msg = [m for m in msg if m.role in ["system", "user"]] - c = count() - if c < max_length: return c, msg + msg_ = [m for m in msg[:-1] if m.role == "system"] msg_.append(msg[-1]) msg = msg_ c = count() if c < max_length: return c, msg + ll = num_tokens_from_string(msg_[0].content) l = num_tokens_from_string(msg_[-1].content) if ll / (ll + l) > 0.8: diff --git a/api/apps/document_app.py b/api/apps/document_app.py index 4a6d3f71bc028b345821d6086f1b1fc32a8292c9..04f721ac946af801733299b9ee16bb0ed6ad65f6 100644 --- a/api/apps/document_app.py +++ b/api/apps/document_app.py @@ -218,7 +218,7 @@ def rm(): ELASTICSEARCH.deleteByQuery(Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id)) DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, 0) - if not DocumentService.delete_by_id(req["doc_id"]): + if not DocumentService.delete(doc): return get_data_error_result( retmsg="Database error (Document removal)!") diff --git a/api/db/db_models.py b/api/db/db_models.py index c32b4d56b5df9a372edb12e73d064e6e218ef2a0..5cec88a3df96067ccd08a08c529b832f61fa051e 100644 --- a/api/db/db_models.py +++ b/api/db/db_models.py @@ -353,7 +353,7 @@ class User(DataBaseModel, UserMixin): email = CharField(max_length=255, null=False, help_text="email", index=True) avatar = TextField(null=True, help_text="avatar base64 string") language = CharField(max_length=32, null=True, help_text="English|Chinese", default="Chinese") - color_schema = CharField(max_length=32, null=True, help_text="Bright|Dark", default="Dark") + color_schema = CharField(max_length=32, null=True, help_text="Bright|Dark", default="Bright") timezone = CharField(max_length=64, null=True, help_text="Timezone", default="UTC+8\tAsia/Shanghai") last_login_time = DateTimeField(null=True) is_authenticated = CharField(max_length=1, null=False, default="1") diff --git a/api/db/init_data.py b/api/db/init_data.py index 3418bcfdcf820826d911d6f18daf813c296bcd3c..b4b63d36bb26a56e76e2ba14a9043ce3f144cc65 100644 --- a/api/db/init_data.py +++ b/api/db/init_data.py @@ -223,7 +223,7 @@ def init_llm_factory(): "fid": factory_infos[3]["name"], "llm_name": "qwen-14B-chat", "tags": "LLM,CHAT,", - "max_tokens": 8191, + "max_tokens": 4096, "model_type": LLMType.CHAT.value }, { "fid": factory_infos[3]["name"], @@ -271,11 +271,15 @@ def init_llm_factory(): pass """ + modify service_config drop table llm; - drop table factories; + drop table llm_factories; update tenant_llm set llm_factory='Tongyi-Qianwen' where llm_factory='通义ĺŤé—®'; update tenant_llm set llm_factory='ZHIPU-AI' where llm_factory='智谱AI'; update tenant set parser_ids='naive:General,one:One,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture'; + alter table knowledgebase modify avatar longtext; + alter table user modify avatar longtext; + alter table dialog modify icon longtext; """ diff --git a/api/db/services/document_service.py b/api/db/services/document_service.py index f58b0e1b8d498b7b91010b7405eb2e2d17934f28..b219861b9a663dd73ec0580d63ef595d431e4a5a 100644 --- a/api/db/services/document_service.py +++ b/api/db/services/document_service.py @@ -60,6 +60,15 @@ class DocumentService(CommonService): raise RuntimeError("Database error (Knowledgebase)!") return doc + @classmethod + @DB.connection_context() + def delete(cls, doc): + e, kb = KnowledgebaseService.get_by_id(doc.kb_id) + if not KnowledgebaseService.update_by_id( + kb.id, {"doc_num": kb.doc_num - 1}): + raise RuntimeError("Database error (Knowledgebase)!") + return cls.delete_by_id(doc.id) + @classmethod @DB.connection_context() def get_newly_uploaded(cls, tm, mod=0, comm=1, items_per_page=64): diff --git a/deepdoc/parser/pdf_parser.py b/deepdoc/parser/pdf_parser.py index 4d8e025616a219b5e47acb029a10681d635c09a1..65185280160d69c119384535d0927376a9b127d7 100644 --- a/deepdoc/parser/pdf_parser.py +++ b/deepdoc/parser/pdf_parser.py @@ -11,7 +11,7 @@ import logging from PIL import Image, ImageDraw import numpy as np -from api.db import ParserType +from PyPDF2 import PdfReader as pdf2_read from deepdoc.vision import OCR, Recognizer, LayoutRecognizer, TableStructureRecognizer from rag.nlp import huqie from copy import deepcopy @@ -288,9 +288,9 @@ class HuParser: for b in bxs]) self.boxes.append(bxs) - def _layouts_rec(self, ZM): + def _layouts_rec(self, ZM, drop=True): assert len(self.page_images) == len(self.boxes) - self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM) + self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM, drop=drop) # cumlative Y for i in range(len(self.boxes)): self.boxes[i]["top"] += \ @@ -908,6 +908,23 @@ class HuParser: self.page_images.append(img) self.page_chars.append([]) + self.outlines = [] + try: + self.pdf = pdf2_read(fnm if isinstance(fnm, str) else BytesIO(fnm)) + outlines = self.pdf.outline + + def dfs(arr, depth): + for a in arr: + if isinstance(a, dict): + self.outlines.append((a["/Title"], depth)) + continue + dfs(a, depth+1) + dfs(outlines, 0) + except Exception as e: + logging.warning(f"Outlines exception: {e}") + if not self.outlines: + logging.warning(f"Miss outlines") + logging.info("Images converted.") self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join( random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in diff --git a/deepdoc/vision/layout_recognizer.py b/deepdoc/vision/layout_recognizer.py index f38a0f539aa909b45d49892e2d78cd23496f6dec..47067068e565051ec6cd6f78736f2f34bb508e49 100644 --- a/deepdoc/vision/layout_recognizer.py +++ b/deepdoc/vision/layout_recognizer.py @@ -39,7 +39,7 @@ class LayoutRecognizer(Recognizer): super().__init__(self.labels, domain, os.path.join(get_project_base_directory(), "rag/res/deepdoc/")) self.garbage_layouts = ["footer", "header", "reference"] - def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16): + def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True): def __is_garbage(b): patt = [r"^•+$", r"(ç‰ćťĺ˝’©|免责条款|地址[::])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$", r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}", @@ -88,7 +88,11 @@ class LayoutRecognizer(Recognizer): i += 1 continue lts_[ii]["visited"] = True - if lts_[ii]["type"] in self.garbage_layouts: + keep_feats = [ + lts_[ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1]*0.9/scale_factor, + lts_[ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1]*0.1/scale_factor, + ] + if drop and lts_[ii]["type"] in self.garbage_layouts and not any(keep_feats): if lts_[ii]["type"] not in garbages: garbages[lts_[ii]["type"]] = [] garbages[lts_[ii]["type"]].append(bxs[i]["text"]) diff --git a/rag/app/manual.py b/rag/app/manual.py index 7ca5451971d896af54a1cdce79717dc98bbca3d6..e72c2ac30f746f13836266fd76706dc7289e20fc 100644 --- a/rag/app/manual.py +++ b/rag/app/manual.py @@ -51,15 +51,30 @@ class Pdf(PdfParser): # set pivot using the most frequent type of title, # then merge between 2 pivot - bull = bullets_category([b["text"] for b in self.boxes]) - most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes]) + if len(self.boxes)>0 and len(self.outlines)/len(self.boxes) > 0.1: + max_lvl = max([lvl for _, lvl in self.outlines]) + most_level = max(0, max_lvl-1) + levels = [] + for b in self.boxes: + for t,lvl in self.outlines: + tks = set([t[i]+t[i+1] for i in range(len(t)-1)]) + tks_ = set([b["text"][i]+b["text"][i+1] for i in range(min(len(t), len(b["text"])-1))]) + if len(set(tks & tks_))/max([len(tks), len(tks_), 1]) > 0.8: + levels.append(lvl) + break + else: + levels.append(max_lvl + 1) + else: + bull = bullets_category([b["text"] for b in self.boxes]) + most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes]) + assert len(self.boxes) == len(levels) sec_ids = [] sid = 0 for i, lvl in enumerate(levels): if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1 sec_ids.append(sid) - #print(lvl, self.boxes[i]["text"], most_level) + #print(lvl, self.boxes[i]["text"], most_level, sid) sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)] for (img, rows), poss in tbls: @@ -67,13 +82,16 @@ class Pdf(PdfParser): chunks = [] last_sid = -2 + tk_cnt = 0 for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])): poss = "\t".join([tag(*pos) for pos in poss]) - if sec_id == last_sid or sec_id == -1: + if tk_cnt < 2048 and (sec_id == last_sid or sec_id == -1): if chunks: chunks[-1] += "\n" + txt + poss + tk_cnt += num_tokens_from_string(txt) continue chunks.append(txt + poss) + tk_cnt = num_tokens_from_string(txt) if sec_id >-1: last_sid = sec_id return chunks, tbls @@ -97,37 +115,17 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca # is it English eng = lang.lower() == "english"#pdf_parser.is_english - i = 0 - chunk = [] - tk_cnt = 0 res = tokenize_table(tbls, doc, eng) - def add_chunk(): - nonlocal chunk, res, doc, pdf_parser, tk_cnt + for ck in cks: d = copy.deepcopy(doc) - ck = "\n".join(chunk) - tokenize(d, pdf_parser.remove_tag(ck), eng) d["image"], poss = pdf_parser.crop(ck, need_position=True) add_positions(d, poss) + tokenize(d, pdf_parser.remove_tag(ck), eng) res.append(d) - chunk = [] - tk_cnt = 0 - - while i < len(cks): - if tk_cnt > 256: add_chunk() - txt = cks[i] - txt_ = pdf_parser.remove_tag(txt) - i += 1 - cnt = num_tokens_from_string(txt_) - chunk.append(txt) - tk_cnt += cnt - if chunk: add_chunk() - - for i, d in enumerate(res): - print(d) - # d["image"].save(f"./logs/{i}.jpg") return res + if __name__ == "__main__": import sys def dummy(prog=None, msg=""): diff --git a/rag/app/one.py b/rag/app/one.py index d43961a48718234615567cca9a746836cc3b8f4c..cce70277a7d1e8a9d8edf3421423f035453b8dd5 100644 --- a/rag/app/one.py +++ b/rag/app/one.py @@ -10,12 +10,10 @@ # See the License for the specific language governing permissions and # limitations under the License. # -import copy import re from rag.app import laws -from rag.nlp import huqie, is_english, tokenize, naive_merge, tokenize_table, add_positions +from rag.nlp import huqie, tokenize from deepdoc.parser import PdfParser, ExcelParser -from rag.settings import cron_logger class Pdf(PdfParser): @@ -33,7 +31,7 @@ class Pdf(PdfParser): from timeit import default_timer as timer start = timer() - self._layouts_rec(zoomin) + self._layouts_rec(zoomin, drop=False) callback(0.63, "Layout analysis finished.") print("paddle layouts:", timer() - start) self._table_transformer_job(zoomin) diff --git a/rag/nlp/search.py b/rag/nlp/search.py index 9f89cd5ab4369bf98ff5ca63438e39d732565634..3b6f20bbb4d7e6a61d9c4976d11f4476f24364f1 100644 --- a/rag/nlp/search.py +++ b/rag/nlp/search.py @@ -215,7 +215,7 @@ class Dealer: else: pieces = re.split(r"([^\|][;。?!ďĽ\n]|[a-z][.?;!][ \n])", answer) for i in range(1, len(pieces)): - if re.match(r"[a-z][.?;!][ \n]", pieces[i]): + if re.match(r"([^\|][;。?!ďĽ\n]|[a-z][.?;!][ \n])", pieces[i]): pieces[i - 1] += pieces[i][0] pieces[i] = pieces[i][1:] idx = [] @@ -243,7 +243,8 @@ class Dealer: chunks_tks, tkweight, vtweight) mx = np.max(sim) * 0.99 - if mx < 0.65: + es_logger.info("{} SIM: {}".format(pieces_[i], mx)) + if mx < 0.63: continue cites[idx[i]] = list( set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4] diff --git a/rag/svr/task_broker.py b/rag/svr/task_broker.py index 62f0d0767259c43a08d87fbc2450b79f2cd52377..9bcc8aa3120a8f89d9d03a9d1ab7c33c07603332 100644 --- a/rag/svr/task_broker.py +++ b/rag/svr/task_broker.py @@ -82,8 +82,8 @@ def dispatch(): tsks = [] if r["type"] == FileType.PDF.value: pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"])) - page_size = 5 - if r["parser_id"] == "paper": page_size = 12 + page_size = 12 + if r["parser_id"] == "paper": page_size = 22 if r["parser_id"] == "one": page_size = 1000000000 for s,e in r["parser_config"].get("pages", [(0,100000)]): e = min(e, pages)