/* * This file is part of the GROMACS molecular simulation package. * * Copyright (c) 1991-2000, University of Groningen, The Netherlands. * Copyright (c) 2001-2004, The GROMACS development team. * Copyright (c) 2013,2014, by the GROMACS development team, led by * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl, * and including many others, as listed in the AUTHORS file in the * top-level source directory and at http://www.gromacs.org. * * GROMACS is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * GROMACS is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with GROMACS; if not, see * http://www.gnu.org/licenses, or write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * If you want to redistribute modifications to GROMACS, please * consider that scientific software is very special. Version * control is crucial - bugs must be traceable. We will be happy to * consider code for inclusion in the official distribution, but * derived work must not be called official GROMACS. Details are found * in the README & COPYING files - if they are missing, get the * official version at http://www.gromacs.org. * * To help us fund GROMACS development, we humbly ask that you cite * the research papers on the package. Check out http://www.gromacs.org. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <math.h> #include <string.h> #include <assert.h> #include "sysstuff.h" #include "typedefs.h" #include "macros.h" #include "gromacs/utility/smalloc.h" #include "macros.h" #include "physics.h" #include "force.h" #include "nonbonded.h" #include "names.h" #include "network.h" #include "pbc.h" #include "ns.h" #include "nrnb.h" #include "bondf.h" #include "mshift.h" #include "txtdump.h" #include "coulomb.h" #include "pme.h" #include "mdrun.h" #include "domdec.h" #include "qmmm.h" #include "gmx_omp_nthreads.h" #include "gromacs/timing/wallcycle.h" #include "gmx_fatal.h" /* PLUMED */ #include "../../../Plumed.h" int plumedswitch=0; plumed plumedmain; void(*plumedcmd)(plumed,const char*,const void*)=NULL; /* END PLUMED */ void ns(FILE *fp, t_forcerec *fr, matrix box, gmx_groups_t *groups, gmx_localtop_t *top, t_mdatoms *md, t_commrec *cr, t_nrnb *nrnb, gmx_bool bFillGrid, gmx_bool bDoLongRangeNS) { char *ptr; int nsearch; if (!fr->ns.nblist_initialized) { init_neighbor_list(fp, fr, md->homenr); } if (fr->bTwinRange) { fr->nlr = 0; } nsearch = search_neighbours(fp, fr, box, top, groups, cr, nrnb, md, bFillGrid, bDoLongRangeNS); if (debug) { fprintf(debug, "nsearch = %d\n", nsearch); } /* Check whether we have to do dynamic load balancing */ /*if ((nsb->nstDlb > 0) && (mod(step,nsb->nstDlb) == 0)) count_nb(cr,nsb,&(top->blocks[ebCGS]),nns,fr->nlr, &(top->idef),opts->ngener); */ if (fr->ns.dump_nl > 0) { dump_nblist(fp, cr, fr, fr->ns.dump_nl); } } static void reduce_thread_forces(int n, rvec *f, tensor vir_q, tensor vir_lj, real *Vcorr_q, real *Vcorr_lj, real *dvdl_q, real *dvdl_lj, int nthreads, f_thread_t *f_t) { int t, i; int nthreads_loop gmx_unused; /* This reduction can run over any number of threads */ nthreads_loop = gmx_omp_nthreads_get(emntBonded); #pragma omp parallel for num_threads(nthreads_loop) private(t) schedule(static) for (i = 0; i < n; i++) { for (t = 1; t < nthreads; t++) { rvec_inc(f[i], f_t[t].f[i]); } } for (t = 1; t < nthreads; t++) { *Vcorr_q += f_t[t].Vcorr_q; *Vcorr_lj += f_t[t].Vcorr_lj; *dvdl_q += f_t[t].dvdl[efptCOUL]; *dvdl_lj += f_t[t].dvdl[efptVDW]; m_add(vir_q, f_t[t].vir_q, vir_q); m_add(vir_lj, f_t[t].vir_lj, vir_lj); } } void gmx_print_sepdvdl(FILE *fplog, const char *s, real v, real dvdlambda) { fprintf(fplog, " %-30s V %12.5e dVdl %12.5e\n", s, v, dvdlambda); } void do_force_lowlevel(FILE *fplog, gmx_int64_t step, t_forcerec *fr, t_inputrec *ir, t_idef *idef, t_commrec *cr, t_nrnb *nrnb, gmx_wallcycle_t wcycle, t_mdatoms *md, rvec x[], history_t *hist, rvec f[], rvec f_longrange[], gmx_enerdata_t *enerd, t_fcdata *fcd, gmx_localtop_t *top, gmx_genborn_t *born, t_atomtypes *atype, gmx_bool bBornRadii, matrix box, t_lambda *fepvals, real *lambda, t_graph *graph, t_blocka *excl, rvec mu_tot[], int flags, float *cycles_pme) { int i, j; int donb_flags; gmx_bool bDoEpot, bSepDVDL, bSB; int pme_flags; matrix boxs; rvec box_size; t_pbc pbc; char buf[22]; double clam_i, vlam_i; real dvdl_dum[efptNR], dvdl_nb[efptNR], lam_i[efptNR]; real dvdl_q, dvdl_lj; #ifdef GMX_MPI double t0 = 0.0, t1, t2, t3; /* time measurement for coarse load balancing */ #endif #define PRINT_SEPDVDL(s, v, dvdlambda) if (bSepDVDL) { gmx_print_sepdvdl(fplog, s, v, dvdlambda); } set_pbc(&pbc, fr->ePBC, box); /* reset free energy components */ for (i = 0; i < efptNR; i++) { dvdl_nb[i] = 0; dvdl_dum[i] = 0; } /* Reset box */ for (i = 0; (i < DIM); i++) { box_size[i] = box[i][i]; } bSepDVDL = (fr->bSepDVDL && do_per_step(step, ir->nstlog)); debug_gmx(); /* do QMMM first if requested */ if (fr->bQMMM) { enerd->term[F_EQM] = calculate_QMMM(cr, x, f, fr); } if (bSepDVDL) { fprintf(fplog, "Step %s: non-bonded V and dVdl for rank %d:\n", gmx_step_str(step, buf), cr->nodeid); } /* Call the short range functions all in one go. */ #ifdef GMX_MPI /*#define TAKETIME ((cr->npmenodes) && (fr->timesteps < 12))*/ #define TAKETIME FALSE if (TAKETIME) { MPI_Barrier(cr->mpi_comm_mygroup); t0 = MPI_Wtime(); } #endif if (ir->nwall) { /* foreign lambda component for walls */ real dvdl_walls = do_walls(ir, fr, box, md, x, f, lambda[efptVDW], enerd->grpp.ener[egLJSR], nrnb); PRINT_SEPDVDL("Walls", 0.0, dvdl_walls); enerd->dvdl_lin[efptVDW] += dvdl_walls; } /* If doing GB, reset dvda and calculate the Born radii */ if (ir->implicit_solvent) { wallcycle_sub_start(wcycle, ewcsNONBONDED); for (i = 0; i < born->nr; i++) { fr->dvda[i] = 0; } if (bBornRadii) { calc_gb_rad(cr, fr, ir, top, x, &(fr->gblist), born, md, nrnb); } wallcycle_sub_stop(wcycle, ewcsNONBONDED); } where(); /* We only do non-bonded calculation with group scheme here, the verlet * calls are done from do_force_cutsVERLET(). */ if (fr->cutoff_scheme == ecutsGROUP && (flags & GMX_FORCE_NONBONDED)) { donb_flags = 0; /* Add short-range interactions */ donb_flags |= GMX_NONBONDED_DO_SR; /* Currently all group scheme kernels always calculate (shift-)forces */ if (flags & GMX_FORCE_FORCES) { donb_flags |= GMX_NONBONDED_DO_FORCE; } if (flags & GMX_FORCE_VIRIAL) { donb_flags |= GMX_NONBONDED_DO_SHIFTFORCE; } if (flags & GMX_FORCE_ENERGY) { donb_flags |= GMX_NONBONDED_DO_POTENTIAL; } if (flags & GMX_FORCE_DO_LR) { donb_flags |= GMX_NONBONDED_DO_LR; } wallcycle_sub_start(wcycle, ewcsNONBONDED); do_nonbonded(fr, x, f, f_longrange, md, excl, &enerd->grpp, nrnb, lambda, dvdl_nb, -1, -1, donb_flags); /* If we do foreign lambda and we have soft-core interactions * we have to recalculate the (non-linear) energies contributions. */ if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) && fepvals->sc_alpha != 0) { for (i = 0; i < enerd->n_lambda; i++) { for (j = 0; j < efptNR; j++) { lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]); } reset_foreign_enerdata(enerd); do_nonbonded(fr, x, f, f_longrange, md, excl, &(enerd->foreign_grpp), nrnb, lam_i, dvdl_dum, -1, -1, (donb_flags & ~GMX_NONBONDED_DO_FORCE) | GMX_NONBONDED_DO_FOREIGNLAMBDA); sum_epot(&(enerd->foreign_grpp), enerd->foreign_term); enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT]; } } wallcycle_sub_stop(wcycle, ewcsNONBONDED); where(); } /* If we are doing GB, calculate bonded forces and apply corrections * to the solvation forces */ /* MRS: Eventually, many need to include free energy contribution here! */ if (ir->implicit_solvent) { wallcycle_sub_start(wcycle, ewcsBONDED); calc_gb_forces(cr, md, born, top, x, f, fr, idef, ir->gb_algorithm, ir->sa_algorithm, nrnb, &pbc, graph, enerd); wallcycle_sub_stop(wcycle, ewcsBONDED); } #ifdef GMX_MPI if (TAKETIME) { t1 = MPI_Wtime(); fr->t_fnbf += t1-t0; } #endif if (fepvals->sc_alpha != 0) { enerd->dvdl_nonlin[efptVDW] += dvdl_nb[efptVDW]; } else { enerd->dvdl_lin[efptVDW] += dvdl_nb[efptVDW]; } if (fepvals->sc_alpha != 0) /* even though coulomb part is linear, we already added it, beacuse we need to go through the vdw calculation anyway */ { enerd->dvdl_nonlin[efptCOUL] += dvdl_nb[efptCOUL]; } else { enerd->dvdl_lin[efptCOUL] += dvdl_nb[efptCOUL]; } if (bSepDVDL) { real V_short_range = 0; real dvdl_short_range = 0; for (i = 0; i < enerd->grpp.nener; i++) { V_short_range += (fr->bBHAM ? enerd->grpp.ener[egBHAMSR][i] : enerd->grpp.ener[egLJSR][i]) + enerd->grpp.ener[egCOULSR][i] + enerd->grpp.ener[egGB][i]; } dvdl_short_range = dvdl_nb[efptVDW] + dvdl_nb[efptCOUL]; PRINT_SEPDVDL("VdW and Coulomb SR particle-p.", V_short_range, dvdl_short_range); } debug_gmx(); if (debug) { pr_rvecs(debug, 0, "fshift after SR", fr->fshift, SHIFTS); } /* Shift the coordinates. Must be done before bonded forces and PPPM, * but is also necessary for SHAKE and update, therefore it can NOT * go when no bonded forces have to be evaluated. */ /* Here sometimes we would not need to shift with NBFonly, * but we do so anyhow for consistency of the returned coordinates. */ if (graph) { shift_self(graph, box, x); if (TRICLINIC(box)) { inc_nrnb(nrnb, eNR_SHIFTX, 2*graph->nnodes); } else { inc_nrnb(nrnb, eNR_SHIFTX, graph->nnodes); } } /* Check whether we need to do bondeds or correct for exclusions */ if (fr->bMolPBC && ((flags & GMX_FORCE_BONDED) || EEL_RF(fr->eeltype) || EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype))) { /* Since all atoms are in the rectangular or triclinic unit-cell, * only single box vector shifts (2 in x) are required. */ set_pbc_dd(&pbc, fr->ePBC, cr->dd, TRUE, box); } debug_gmx(); if (flags & GMX_FORCE_BONDED) { wallcycle_sub_start(wcycle, ewcsBONDED); calc_bonds(fplog, cr->ms, idef, x, hist, f, fr, &pbc, graph, enerd, nrnb, lambda, md, fcd, DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL, atype, born, flags, fr->bSepDVDL && do_per_step(step, ir->nstlog), step); /* Check if we have to determine energy differences * at foreign lambda's. */ if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) && idef->ilsort != ilsortNO_FE) { if (idef->ilsort != ilsortFE_SORTED) { gmx_incons("The bonded interactions are not sorted for free energy"); } for (i = 0; i < enerd->n_lambda; i++) { reset_foreign_enerdata(enerd); for (j = 0; j < efptNR; j++) { lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]); } calc_bonds_lambda(fplog, idef, x, fr, &pbc, graph, &(enerd->foreign_grpp), enerd->foreign_term, nrnb, lam_i, md, fcd, DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL); sum_epot(&(enerd->foreign_grpp), enerd->foreign_term); enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT]; } } debug_gmx(); wallcycle_sub_stop(wcycle, ewcsBONDED); } where(); *cycles_pme = 0; if (EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype)) { real Vlr = 0, Vcorr = 0; real dvdl_long_range = 0; int status = 0; bSB = (ir->nwall == 2); if (bSB) { copy_mat(box, boxs); svmul(ir->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]); box_size[ZZ] *= ir->wall_ewald_zfac; } } /* Do long-range electrostatics and/or LJ-PME, including related short-range * corrections. */ clear_mat(fr->vir_el_recip); clear_mat(fr->vir_lj_recip); if (EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype)) { real Vlr_q = 0, Vlr_lj = 0, Vcorr_q = 0, Vcorr_lj = 0; real dvdl_long_range_q = 0, dvdl_long_range_lj = 0; int status = 0; if (EEL_PME_EWALD(fr->eeltype) || EVDW_PME(fr->vdwtype)) { real dvdl_long_range_correction_q = 0; real dvdl_long_range_correction_lj = 0; /* With the Verlet scheme exclusion forces are calculated * in the non-bonded kernel. */ /* The TPI molecule does not have exclusions with the rest * of the system and no intra-molecular PME grid * contributions will be calculated in * gmx_pme_calc_energy. */ if ((ir->cutoff_scheme == ecutsGROUP && fr->n_tpi == 0) || ir->ewald_geometry != eewg3D || ir->epsilon_surface != 0) { int nthreads, t; wallcycle_sub_start(wcycle, ewcsEWALD_CORRECTION); if (fr->n_tpi > 0) { gmx_fatal(FARGS, "TPI with PME currently only works in a 3D geometry with tin-foil boundary conditions"); } nthreads = gmx_omp_nthreads_get(emntBonded); #pragma omp parallel for num_threads(nthreads) schedule(static) for (t = 0; t < nthreads; t++) { int s, e, i; rvec *fnv; tensor *vir_q, *vir_lj; real *Vcorrt_q, *Vcorrt_lj, *dvdlt_q, *dvdlt_lj; if (t == 0) { fnv = fr->f_novirsum; vir_q = &fr->vir_el_recip; vir_lj = &fr->vir_lj_recip; Vcorrt_q = &Vcorr_q; Vcorrt_lj = &Vcorr_lj; dvdlt_q = &dvdl_long_range_correction_q; dvdlt_lj = &dvdl_long_range_correction_lj; } else { fnv = fr->f_t[t].f; vir_q = &fr->f_t[t].vir_q; vir_lj = &fr->f_t[t].vir_lj; Vcorrt_q = &fr->f_t[t].Vcorr_q; Vcorrt_lj = &fr->f_t[t].Vcorr_lj; dvdlt_q = &fr->f_t[t].dvdl[efptCOUL]; dvdlt_lj = &fr->f_t[t].dvdl[efptVDW]; for (i = 0; i < fr->natoms_force; i++) { clear_rvec(fnv[i]); } clear_mat(*vir_q); clear_mat(*vir_lj); } *dvdlt_q = 0; *dvdlt_lj = 0; ewald_LRcorrection(fr->excl_load[t], fr->excl_load[t+1], cr, t, fr, md->chargeA, md->chargeB, md->sqrt_c6A, md->sqrt_c6B, md->sigmaA, md->sigmaB, md->sigma3A, md->sigma3B, md->nChargePerturbed || md->nTypePerturbed, ir->cutoff_scheme != ecutsVERLET, excl, x, bSB ? boxs : box, mu_tot, ir->ewald_geometry, ir->epsilon_surface, fnv, *vir_q, *vir_lj, Vcorrt_q, Vcorrt_lj, lambda[efptCOUL], lambda[efptVDW], dvdlt_q, dvdlt_lj); } if (nthreads > 1) { reduce_thread_forces(fr->natoms_force, fr->f_novirsum, fr->vir_el_recip, fr->vir_lj_recip, &Vcorr_q, &Vcorr_lj, &dvdl_long_range_correction_q, &dvdl_long_range_correction_lj, nthreads, fr->f_t); } wallcycle_sub_stop(wcycle, ewcsEWALD_CORRECTION); } if (EEL_PME_EWALD(fr->eeltype) && fr->n_tpi == 0) { Vcorr_q += ewald_charge_correction(cr, fr, lambda[efptCOUL], box, &dvdl_long_range_correction_q, fr->vir_el_recip); } PRINT_SEPDVDL("Ewald excl./charge/dip. corr.", Vcorr_q, dvdl_long_range_correction_q); PRINT_SEPDVDL("Ewald excl. corr. LJ", Vcorr_lj, dvdl_long_range_correction_lj); enerd->dvdl_lin[efptCOUL] += dvdl_long_range_correction_q; enerd->dvdl_lin[efptVDW] += dvdl_long_range_correction_lj; } if ((EEL_PME(fr->eeltype) || EVDW_PME(fr->vdwtype))) { if (cr->duty & DUTY_PME) { /* Do reciprocal PME for Coulomb and/or LJ. */ assert(fr->n_tpi >= 0); if (fr->n_tpi == 0 || (flags & GMX_FORCE_STATECHANGED)) { pme_flags = GMX_PME_SPREAD | GMX_PME_SOLVE; if (EEL_PME(fr->eeltype)) { pme_flags |= GMX_PME_DO_COULOMB; } if (EVDW_PME(fr->vdwtype)) { pme_flags |= GMX_PME_DO_LJ; } if (flags & GMX_FORCE_FORCES) { pme_flags |= GMX_PME_CALC_F; } if (flags & GMX_FORCE_VIRIAL) { pme_flags |= GMX_PME_CALC_ENER_VIR; } if (fr->n_tpi > 0) { /* We don't calculate f, but we do want the potential */ pme_flags |= GMX_PME_CALC_POT; } wallcycle_start(wcycle, ewcPMEMESH); status = gmx_pme_do(fr->pmedata, 0, md->homenr - fr->n_tpi, x, fr->f_novirsum, md->chargeA, md->chargeB, md->sqrt_c6A, md->sqrt_c6B, md->sigmaA, md->sigmaB, bSB ? boxs : box, cr, DOMAINDECOMP(cr) ? dd_pme_maxshift_x(cr->dd) : 0, DOMAINDECOMP(cr) ? dd_pme_maxshift_y(cr->dd) : 0, nrnb, wcycle, fr->vir_el_recip, fr->ewaldcoeff_q, fr->vir_lj_recip, fr->ewaldcoeff_lj, &Vlr_q, &Vlr_lj, lambda[efptCOUL], lambda[efptVDW], &dvdl_long_range_q, &dvdl_long_range_lj, pme_flags); *cycles_pme = wallcycle_stop(wcycle, ewcPMEMESH); if (status != 0) { gmx_fatal(FARGS, "Error %d in reciprocal PME routine", status); } /* We should try to do as little computation after * this as possible, because parallel PME synchronizes * the nodes, so we want all load imbalance of the * rest of the force calculation to be before the PME * call. DD load balancing is done on the whole time * of the force call (without PME). */ } if (fr->n_tpi > 0) { if (EVDW_PME(ir->vdwtype)) { gmx_fatal(FARGS, "Test particle insertion not implemented with LJ-PME"); } /* Determine the PME grid energy of the test molecule * with the PME grid potential of the other charges. */ gmx_pme_calc_energy(fr->pmedata, fr->n_tpi, x + md->homenr - fr->n_tpi, md->chargeA + md->homenr - fr->n_tpi, &Vlr_q); } PRINT_SEPDVDL("PME mesh", Vlr_q + Vlr_lj, dvdl_long_range_q+dvdl_long_range_lj); } } if (!EEL_PME(fr->eeltype) && EEL_PME_EWALD(fr->eeltype)) { Vlr_q = do_ewald(ir, x, fr->f_novirsum, md->chargeA, md->chargeB, box_size, cr, md->homenr, fr->vir_el_recip, fr->ewaldcoeff_q, lambda[efptCOUL], &dvdl_long_range_q, fr->ewald_table); PRINT_SEPDVDL("Ewald long-range", Vlr_q, dvdl_long_range_q); } /* Note that with separate PME nodes we get the real energies later */ enerd->dvdl_lin[efptCOUL] += dvdl_long_range_q; enerd->dvdl_lin[efptVDW] += dvdl_long_range_lj; enerd->term[F_COUL_RECIP] = Vlr_q + Vcorr_q; enerd->term[F_LJ_RECIP] = Vlr_lj + Vcorr_lj; if (debug) { fprintf(debug, "Vlr_q = %g, Vcorr_q = %g, Vlr_corr_q = %g\n", Vlr_q, Vcorr_q, enerd->term[F_COUL_RECIP]); pr_rvecs(debug, 0, "vir_el_recip after corr", fr->vir_el_recip, DIM); pr_rvecs(debug, 0, "fshift after LR Corrections", fr->fshift, SHIFTS); fprintf(debug, "Vlr_lj: %g, Vcorr_lj = %g, Vlr_corr_lj = %g\n", Vlr_lj, Vcorr_lj, enerd->term[F_LJ_RECIP]); pr_rvecs(debug, 0, "vir_lj_recip after corr", fr->vir_lj_recip, DIM); } } else { /* Is there a reaction-field exclusion correction needed? */ if (EEL_RF(fr->eeltype) && eelRF_NEC != fr->eeltype) { /* With the Verlet scheme, exclusion forces are calculated * in the non-bonded kernel. */ if (ir->cutoff_scheme != ecutsVERLET) { real dvdl_rf_excl = 0; enerd->term[F_RF_EXCL] = RF_excl_correction(fr, graph, md, excl, x, f, fr->fshift, &pbc, lambda[efptCOUL], &dvdl_rf_excl); enerd->dvdl_lin[efptCOUL] += dvdl_rf_excl; PRINT_SEPDVDL("RF exclusion correction", enerd->term[F_RF_EXCL], dvdl_rf_excl); } } } where(); debug_gmx(); if (debug) { print_nrnb(debug, nrnb); } debug_gmx(); #ifdef GMX_MPI if (TAKETIME) { t2 = MPI_Wtime(); MPI_Barrier(cr->mpi_comm_mygroup); t3 = MPI_Wtime(); fr->t_wait += t3-t2; if (fr->timesteps == 11) { fprintf(stderr, "* PP load balancing info: rank %d, step %s, rel wait time=%3.0f%% , load string value: %7.2f\n", cr->nodeid, gmx_step_str(fr->timesteps, buf), 100*fr->t_wait/(fr->t_wait+fr->t_fnbf), (fr->t_fnbf+fr->t_wait)/fr->t_fnbf); } fr->timesteps++; } #endif if (debug) { pr_rvecs(debug, 0, "fshift after bondeds", fr->fshift, SHIFTS); } /* PLUMED */ if(plumedswitch){ int plumedNeedsEnergy; (*plumedcmd)(plumedmain,"isEnergyNeeded",&plumedNeedsEnergy); if(!plumedNeedsEnergy) (*plumedcmd)(plumedmain,"performCalc",NULL); } /* END PLUMED */ } void init_enerdata(int ngener, int n_lambda, gmx_enerdata_t *enerd) { int i, n2; for (i = 0; i < F_NRE; i++) { enerd->term[i] = 0; enerd->foreign_term[i] = 0; } for (i = 0; i < efptNR; i++) { enerd->dvdl_lin[i] = 0; enerd->dvdl_nonlin[i] = 0; } n2 = ngener*ngener; if (debug) { fprintf(debug, "Creating %d sized group matrix for energies\n", n2); } enerd->grpp.nener = n2; enerd->foreign_grpp.nener = n2; for (i = 0; (i < egNR); i++) { snew(enerd->grpp.ener[i], n2); snew(enerd->foreign_grpp.ener[i], n2); } if (n_lambda) { enerd->n_lambda = 1 + n_lambda; snew(enerd->enerpart_lambda, enerd->n_lambda); } else { enerd->n_lambda = 0; } } void destroy_enerdata(gmx_enerdata_t *enerd) { int i; for (i = 0; (i < egNR); i++) { sfree(enerd->grpp.ener[i]); } for (i = 0; (i < egNR); i++) { sfree(enerd->foreign_grpp.ener[i]); } if (enerd->n_lambda) { sfree(enerd->enerpart_lambda); } } static real sum_v(int n, real v[]) { real t; int i; t = 0.0; for (i = 0; (i < n); i++) { t = t + v[i]; } return t; } void sum_epot(gmx_grppairener_t *grpp, real *epot) { int i; /* Accumulate energies */ epot[F_COUL_SR] = sum_v(grpp->nener, grpp->ener[egCOULSR]); epot[F_LJ] = sum_v(grpp->nener, grpp->ener[egLJSR]); epot[F_LJ14] = sum_v(grpp->nener, grpp->ener[egLJ14]); epot[F_COUL14] = sum_v(grpp->nener, grpp->ener[egCOUL14]); epot[F_COUL_LR] = sum_v(grpp->nener, grpp->ener[egCOULLR]); epot[F_LJ_LR] = sum_v(grpp->nener, grpp->ener[egLJLR]); /* We have already added 1-2,1-3, and 1-4 terms to F_GBPOL */ epot[F_GBPOL] += sum_v(grpp->nener, grpp->ener[egGB]); /* lattice part of LR doesnt belong to any group * and has been added earlier */ epot[F_BHAM] = sum_v(grpp->nener, grpp->ener[egBHAMSR]); epot[F_BHAM_LR] = sum_v(grpp->nener, grpp->ener[egBHAMLR]); epot[F_EPOT] = 0; for (i = 0; (i < F_EPOT); i++) { if (i != F_DISRESVIOL && i != F_ORIRESDEV) { epot[F_EPOT] += epot[i]; } } } void sum_dhdl(gmx_enerdata_t *enerd, real *lambda, t_lambda *fepvals) { int i, j, index; double dlam; enerd->dvdl_lin[efptVDW] += enerd->term[F_DVDL_VDW]; /* include dispersion correction */ enerd->term[F_DVDL] = 0.0; for (i = 0; i < efptNR; i++) { if (fepvals->separate_dvdl[i]) { /* could this be done more readably/compactly? */ switch (i) { case (efptMASS): index = F_DKDL; break; case (efptCOUL): index = F_DVDL_COUL; break; case (efptVDW): index = F_DVDL_VDW; break; case (efptBONDED): index = F_DVDL_BONDED; break; case (efptRESTRAINT): index = F_DVDL_RESTRAINT; break; default: index = F_DVDL; break; } enerd->term[index] = enerd->dvdl_lin[i] + enerd->dvdl_nonlin[i]; if (debug) { fprintf(debug, "dvdl-%s[%2d]: %f: non-linear %f + linear %f\n", efpt_names[i], i, enerd->term[index], enerd->dvdl_nonlin[i], enerd->dvdl_lin[i]); } } else { enerd->term[F_DVDL] += enerd->dvdl_lin[i] + enerd->dvdl_nonlin[i]; if (debug) { fprintf(debug, "dvd-%sl[%2d]: %f: non-linear %f + linear %f\n", efpt_names[0], i, enerd->term[F_DVDL], enerd->dvdl_nonlin[i], enerd->dvdl_lin[i]); } } } /* Notes on the foreign lambda free energy difference evaluation: * Adding the potential and ekin terms that depend linearly on lambda * as delta lam * dvdl to the energy differences is exact. * For the constraints this is not exact, but we have no other option * without literally changing the lengths and reevaluating the energies at each step. * (try to remedy this post 4.6 - MRS) * For the non-bonded LR term we assume that the soft-core (if present) * no longer affects the energy beyond the short-range cut-off, * which is a very good approximation (except for exotic settings). * (investigate how to overcome this post 4.6 - MRS) */ if (fepvals->separate_dvdl[efptBONDED]) { enerd->term[F_DVDL_BONDED] += enerd->term[F_DVDL_CONSTR]; } else { enerd->term[F_DVDL] += enerd->term[F_DVDL_CONSTR]; } enerd->term[F_DVDL_CONSTR] = 0; for (i = 0; i < fepvals->n_lambda; i++) { /* note we are iterating over fepvals here! For the current lam, dlam = 0 automatically, so we don't need to add anything to the enerd->enerpart_lambda[0] */ /* we don't need to worry about dvdl_lin contributions to dE at current lambda, because the contributions to the current lambda are automatically zeroed */ for (j = 0; j < efptNR; j++) { /* Note that this loop is over all dhdl components, not just the separated ones */ dlam = (fepvals->all_lambda[j][i]-lambda[j]); enerd->enerpart_lambda[i+1] += dlam*enerd->dvdl_lin[j]; if (debug) { fprintf(debug, "enerdiff lam %g: (%15s), non-linear %f linear %f*%f\n", fepvals->all_lambda[j][i], efpt_names[j], (enerd->enerpart_lambda[i+1] - enerd->enerpart_lambda[0]), dlam, enerd->dvdl_lin[j]); } } } } void reset_foreign_enerdata(gmx_enerdata_t *enerd) { int i, j; /* First reset all foreign energy components. Foreign energies always called on neighbor search steps */ for (i = 0; (i < egNR); i++) { for (j = 0; (j < enerd->grpp.nener); j++) { enerd->foreign_grpp.ener[i][j] = 0.0; } } /* potential energy components */ for (i = 0; (i <= F_EPOT); i++) { enerd->foreign_term[i] = 0.0; } } void reset_enerdata(t_forcerec *fr, gmx_bool bNS, gmx_enerdata_t *enerd, gmx_bool bMaster) { gmx_bool bKeepLR; int i, j; /* First reset all energy components, except for the long range terms * on the master at non neighbor search steps, since the long range * terms have already been summed at the last neighbor search step. */ bKeepLR = (fr->bTwinRange && !bNS); for (i = 0; (i < egNR); i++) { if (!(bKeepLR && bMaster && (i == egCOULLR || i == egLJLR))) { for (j = 0; (j < enerd->grpp.nener); j++) { enerd->grpp.ener[i][j] = 0.0; } } } for (i = 0; i < efptNR; i++) { enerd->dvdl_lin[i] = 0.0; enerd->dvdl_nonlin[i] = 0.0; } /* Normal potential energy components */ for (i = 0; (i <= F_EPOT); i++) { enerd->term[i] = 0.0; } /* Initialize the dVdlambda term with the long range contribution */ /* Initialize the dvdl term with the long range contribution */ enerd->term[F_DVDL] = 0.0; enerd->term[F_DVDL_COUL] = 0.0; enerd->term[F_DVDL_VDW] = 0.0; enerd->term[F_DVDL_BONDED] = 0.0; enerd->term[F_DVDL_RESTRAINT] = 0.0; enerd->term[F_DKDL] = 0.0; if (enerd->n_lambda > 0) { for (i = 0; i < enerd->n_lambda; i++) { enerd->enerpart_lambda[i] = 0.0; } } /* reset foreign energy data - separate function since we also call it elsewhere */ reset_foreign_enerdata(enerd); }