/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Copyright (c) 2015-2019 The plumed team (see the PEOPLE file at the root of the distribution for a list of names) See http://www.plumed.org for more information. This file is part of plumed, version 2. plumed is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. plumed is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with plumed. If not, see <http://www.gnu.org/licenses/>. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ #include "GridVessel.h" #include "vesselbase/ActionWithVessel.h" #include "tools/Random.h" #include "tools/Tools.h" namespace PLMD { namespace gridtools { void GridVessel::registerKeywords( Keywords& keys ) { AveragingVessel::registerKeywords( keys ); keys.add("compulsory","TYPE","flat","how the grid points are being generated"); keys.add("compulsory","COMPONENTS","the names of the components in the vector"); keys.add("compulsory","COORDINATES","the names of the coordinates of the grid"); keys.add("compulsory","PBC","is the grid periodic in each direction or not"); } GridVessel::GridVessel( const vesselbase::VesselOptions& da ): AveragingVessel(da), bounds_set(false), cube_units(1.0), noderiv(false), npoints(0), wasforced(false) { std::string geom; parse("TYPE",geom); if( geom=="flat" ) gtype=flat; else if( geom=="fibonacci" ) gtype=fibonacci; else plumed_merror( geom + " is invalid geometry type"); std::vector<std::string> compnames; parseVector("COMPONENTS",compnames); std::vector<std::string> coordnames; parseVector("COORDINATES",coordnames); if( gtype==flat ) { dimension=coordnames.size(); str_min.resize( dimension); str_max.resize( dimension ); stride.resize( dimension ); max.resize( dimension ); dx.resize( dimension ); nbin.resize( dimension ); min.resize( dimension ); } else if( gtype==fibonacci ) { if( coordnames.size()!=3 ) error("cannot generate fibonacci grid points on surface of sphere if not 3 input coordinates"); dimension=3; } unsigned n=0; nper=compnames.size()*( 1 + coordnames.size() ); arg_names.resize( coordnames.size() + compnames.size()*( 1 + coordnames.size() ) ); for(unsigned i=0; i<coordnames.size(); ++i) { arg_names[n] = coordnames[i]; n++; } for(unsigned i=0; i<compnames.size(); ++i) { arg_names[n]=compnames[i]; n++; for(unsigned j=0; j<coordnames.size(); ++j) { arg_names[n] = "d" + compnames[i] + "_" + coordnames[j]; n++; } } pbc.resize( dimension ); std::vector<std::string> spbc( dimension ); parseVector("PBC",spbc); for(unsigned i=0; i<dimension; ++i) { if( spbc[i]=="F" ) pbc[i]=false; else if( spbc[i]=="T" ) pbc[i]=true; else plumed_error(); } } void GridVessel::setNoDerivatives() { nper = ( nper/(1+dimension) ); noderiv=true; std::vector<std::string> tnames( dimension ), cnames(nper); for(unsigned i=0; i<dimension; ++i) tnames[i]=arg_names[i]; unsigned k=dimension; for(unsigned i=0; i<nper; ++i) { cnames[i]=arg_names[k]; k+=(1+dimension); } arg_names.resize( dimension + nper ); for(unsigned i=0; i<dimension; ++i) arg_names[i]=tnames[i]; for(unsigned i=0; i<nper; ++i) arg_names[dimension+i]=cnames[i]; } void GridVessel::setBounds( const std::vector<std::string>& smin, const std::vector<std::string>& smax, const std::vector<unsigned>& binsin, const std::vector<double>& spacing ) { plumed_dbg_assert( smin.size()==dimension && smax.size()==dimension ); plumed_assert( gtype==flat && (spacing.size()==dimension || binsin.size()==dimension) ); npoints=1; bounds_set=true; for(unsigned i=0; i<dimension; ++i) { str_min[i]=smin[i]; str_max[i]=smax[i]; Tools::convert( str_min[i], min[i] ); Tools::convert( str_max[i], max[i] ); if( spacing.size()==dimension && binsin.size()==dimension ) { if( spacing[i]==0 ) nbin[i] = binsin[i]; else { double range = max[i] - min[i]; nbin[i] = std::ceil( range / spacing[i]); // This check ensures that nbins is set correctly if spacing is set the same as the number of bins if( nbin[i]!=binsin[i] ) plumed_merror("mismatch between input spacing and input number of bins"); } } else if( binsin.size()==dimension ) nbin[i]=binsin[i]; else if( spacing.size()==dimension ) nbin[i] = std::floor(( max[i] - min[i] ) / spacing[i]) + 1; else plumed_error(); dx[i] = ( max[i] - min[i] ) / static_cast<double>( nbin[i] ); if( !pbc[i] ) { max[i] +=dx[i]; nbin[i]+=1; } stride[i]=npoints; npoints*=nbin[i]; } resize(); // Always resize after setting new bounds as grid size may have have changed } void GridVessel::setupFibonacciGrid( const unsigned& np ) { bounds_set=true; root5 = sqrt(5); npoints = np; golden = ( 1 + sqrt(5) ) / 2.0; igolden = golden - 1; fib_increment = 2*pi*igolden; log_golden2 = std::log( golden*golden ); fib_offset = 2 / static_cast<double>( npoints ); fib_shift = fib_offset/2 - 1; resize(); std::vector<double> icoord( dimension ), jcoord( dimension ); // Find minimum distance between each pair of points std::vector<double> mindists( npoints ); for(unsigned i=0; i<npoints; ++i) { getFibonacciCoordinates( i, icoord ); mindists[i] = 0; for(unsigned j=0; j<npoints; ++j) { if( i==j ) continue ; // Points are not neighbors to themselves getFibonacciCoordinates( j, jcoord ); // Calculate the dot product double dot=0; for(unsigned k=0; k<dimension; ++k) dot += icoord[k]*jcoord[k]; if( dot>mindists[i] ) mindists[i]=dot; } } // And now take minimum of dot products double min=mindists[0]; for(unsigned i=1; i<npoints; ++i) { if( mindists[i]<min ) min=mindists[i]; } double final_cutoff; if( getFibonacciCutoff()<-1 ) final_cutoff=-1; else final_cutoff = cos( acos( getFibonacciCutoff() ) + acos( min ) ); // And now construct the neighbor list fib_nlist.resize( npoints ); for(unsigned i=0; i<npoints; ++i) { getFibonacciCoordinates( i, icoord ); for(unsigned j=0; j<npoints; ++j) { if( i==j ) continue ; // Points are not neighbors to themselves getFibonacciCoordinates( j, jcoord ); // Calculate the dot product double dot=0; for(unsigned k=0; k<dimension; ++k) dot += icoord[k]*jcoord[k]; if( dot>final_cutoff ) { fib_nlist[i].push_back(j); } } } } std::string GridVessel::description() { if( !bounds_set ) return ""; std::string des; if( gtype==flat ) { des="grid of "; std::string num; for(unsigned i=0; i<dimension-1; ++i) { Tools::convert( nbin[i], num ); des += num + " X "; } Tools::convert( nbin[dimension-1], num ); des += num + " equally spaced points between ("; for(unsigned i=0; i<dimension-1; ++i) des += str_min[i] + ","; Tools::convert( nbin[dimension-1], num ); des += str_min[dimension-1] + ") and ("; for(unsigned i=0; i<dimension-1; ++i) des += str_max[i] + ","; des += str_max[dimension-1] + ")"; } else if( gtype==fibonacci ) { std::string num; Tools::convert( npoints, num ); des += "fibonacci grid of " + num + " points on spherical surface"; } return des; } void GridVessel::resize() { plumed_massert( nper>0, "Number of datapoints at each grid point has not been set"); resizeBuffer( getNumberOfBufferPoints()*nper + 1 + 2*getAction()->getNumberOfDerivatives() ); setDataSize( npoints*nper ); forces.resize( npoints ); if( active.size()!=npoints) active.resize( npoints, true ); } unsigned GridVessel::getIndex( const std::vector<unsigned>& indices ) const { plumed_dbg_assert( gtype==flat && bounds_set && indices.size()==dimension ); // indices are flattended using a column-major order unsigned index=indices[dimension-1]; for(unsigned i=dimension-1; i>0; --i) { index=index*nbin[i-1]+indices[i-1]; } return index; } void GridVessel::getIndices( const std::vector<double>& point, std::vector<unsigned>& indices ) const { plumed_dbg_assert( gtype==flat && bounds_set && point.size()==dimension && indices.size()==dimension ); for(unsigned i=0; i<dimension; ++i) { indices[i]=std::floor( (point[i] - min[i])/dx[i] ); if( pbc[i] ) indices[i]=indices[i]%nbin[i]; else if( indices[i]>nbin[i] ) plumed_merror("point is outside grid range"); } } unsigned GridVessel::getIndex( const std::vector<double>& point ) const { plumed_dbg_assert( gtype==flat && bounds_set && point.size()==dimension ); if( gtype==flat ) { std::vector<unsigned> indices(dimension); getIndices( point, indices ); return getIndex( indices ); } else if( gtype==fibonacci ) { return getFibonacciIndex( point ); } else { plumed_error(); } } unsigned GridVessel::getFibonacciIndex( const std::vector<double>& p ) const { plumed_dbg_assert( gtype==fibonacci ); // Convert input point to coordinates on cylinder int k=2; double phi = atan2( p[2], p[0] ), sinthet2 = 1 - p[1]*p[1]; // Calculate power to raise golden ratio if( sinthet2<epsilon ) { k = 2; } else { k = std::floor( std::log( npoints*pi*root5*sinthet2 ) / log_golden2 ); if( k<2 ) k = 2; } double Fk = pow( golden, k ) / root5, F0 = std::round(Fk), F1 = std::round(Fk*golden); Matrix<double> B(2,2), invB(2,2); std::vector<double> thisp(3); B(0,0) = 2*pi*((F0+1)*igolden - std::floor((F0+1)*igolden)) - fib_increment; B(0,1) = 2*pi*((F1+1)*igolden - std::floor((F1+1)*igolden)) - fib_increment; B(1,0) = -2*F0/npoints; B(1,1) = -2*F1/npoints; Invert( B, invB ); std::vector<double> vv(2), rc(2); vv[0]=-phi; vv[1] = p[1] - fib_shift; mult( invB, vv, rc ); std::vector<int> c(2); c[0]=std::floor(rc[0]); c[1]=std::floor(rc[1]); unsigned outind; double mindist = 10000000.; for(int s=0; s<4; ++s) { double ttt, costheta = B(1,0)*( c[0] + s%2 ) + B(1,1)*( c[1] + s/2 ) + fib_shift; if( costheta>1 ) ttt=1; else if( costheta<-1 ) ttt=-1; else ttt=costheta; costheta = 2*ttt - costheta; unsigned i = std::floor( 0.5*npoints*(1+costheta) ); getFibonacciCoordinates( i, thisp ); double dist=0; for(unsigned j=0; j<3; ++j) { double tmp=thisp[j]-p[j]; dist += tmp*tmp; } if( dist<mindist ) { outind = i; mindist = dist; } } return outind; } void GridVessel::convertIndexToIndices( const unsigned& index, const std::vector<unsigned>& nnbin, std::vector<unsigned>& indices ) const { plumed_dbg_assert( gtype==flat ); unsigned kk=index; indices[0]=index%nnbin[0]; for(unsigned i=1; i<dimension-1; ++i) { kk=(kk-indices[i-1])/nnbin[i-1]; indices[i]=kk%nnbin[i]; } if(dimension>=2) { // I think this is wrong indices[dimension-1]=(kk-indices[dimension-2])/nnbin[dimension-2]; } } void GridVessel::getIndices( const unsigned& index, std::vector<unsigned>& indices ) const { plumed_dbg_assert( gtype==flat ); convertIndexToIndices( index, nbin, indices ); } void GridVessel::getGridPointCoordinates( const unsigned& ipoint, std::vector<double>& x ) const { std::vector<unsigned> tindices( dimension ); getGridPointCoordinates( ipoint, tindices, x ); } void GridVessel::getGridPointCoordinates( const unsigned& ipoint, std::vector<unsigned>& tindices, std::vector<double>& x ) const { plumed_dbg_assert( bounds_set && x.size()==dimension && tindices.size()==dimension && ipoint<npoints ); if( gtype==flat ) { getFlatGridCoordinates( ipoint, tindices, x ); } else if( gtype==fibonacci ) { getFibonacciCoordinates( ipoint, x ); } else { plumed_error(); } } void GridVessel::getFlatGridCoordinates( const unsigned& ipoint, std::vector<unsigned>& tindices, std::vector<double>& x ) const { plumed_dbg_assert( gtype==flat ); getIndices( ipoint, tindices ); for(unsigned i=0; i<dimension; ++i) x[i] = min[i] + dx[i]*tindices[i]; } void GridVessel::getFibonacciCoordinates( const unsigned& ipoint, std::vector<double>& x ) const { plumed_dbg_assert( gtype==fibonacci ); x[1] = (ipoint*fib_offset) + fib_shift; double r = sqrt( 1 - x[1]*x[1] ); double phi = ipoint*fib_increment; x[0] = r*cos(phi); x[2] = r*sin(phi); double norm=0; for(unsigned j=0; j<3; ++j) norm+=x[j]*x[j]; norm = sqrt(norm); for(unsigned j=0; j<3; ++j) x[j] = x[j] / norm; } void GridVessel::getSplineNeighbors( const unsigned& mybox, std::vector<unsigned>& mysneigh ) const { plumed_dbg_assert( gtype==flat ); mysneigh.resize( static_cast<unsigned>(pow(2.,dimension)) ); std::vector<unsigned> tmp_indices( dimension ); std::vector<unsigned> my_indices( dimension ); getIndices( mybox, my_indices ); for(unsigned i=0; i<mysneigh.size(); ++i) { unsigned tmp=i; for(unsigned j=0; j<dimension; ++j) { unsigned i0=tmp%2+my_indices[j]; tmp/=2; if(!pbc[j] && i0==nbin[j]) getAction()->error("Extrapolating function on grid"); if( pbc[j] && i0==nbin[j]) i0=0; tmp_indices[j]=i0; } mysneigh[i]=getIndex( tmp_indices ); plumed_massert( active[mysneigh[i]], "inactive grid point required for splines"); } } double GridVessel::getGridElement( const unsigned& ipoint, const unsigned& jelement ) const { plumed_assert( bounds_set && ipoint<npoints && jelement<nper && active[ipoint] ); return getDataElement( nper*ipoint + jelement ); } void GridVessel::setGridElement( const unsigned& ipoint, const unsigned& jelement, const double& value ) { plumed_dbg_assert( bounds_set && ipoint<npoints && jelement<nper ); setDataElement( nper*ipoint + jelement, value ); } void GridVessel::addToGridElement( const unsigned& ipoint, const unsigned& jelement, const double& value ) { plumed_dbg_assert( bounds_set && ipoint<npoints && jelement<nper ); addDataElement( nper*ipoint + jelement, value ); } void GridVessel::calculate( const unsigned& current, MultiValue& myvals, std::vector<double>& buffer, std::vector<unsigned>& der_list ) const { plumed_dbg_assert( myvals.getNumberOfValues()==(nper+1) ); for(unsigned i=0; i<nper; ++i) buffer[bufstart + nper*current + i] += myvals.get(i+1); } void GridVessel::finish( const std::vector<double>& buffer ) { if( wasforced ) getFinalForces( buffer, finalForces ); else AveragingVessel::finish( buffer ); } double GridVessel::getGridElement( const std::vector<unsigned>& indices, const unsigned& jelement ) const { return getGridElement( getIndex( indices ), jelement ); } void GridVessel::setGridElement( const std::vector<unsigned>& indices, const unsigned& jelement, const double& value ) { setGridElement( getIndex( indices ), jelement, value ); } std::vector<std::string> GridVessel::getMin() const { plumed_dbg_assert( gtype==flat ); return str_min; } std::vector<std::string> GridVessel::getMax() const { plumed_dbg_assert( gtype==flat ); return str_max; } std::vector<unsigned> GridVessel::getNbin() const { plumed_dbg_assert( gtype==flat && bounds_set ); std::vector<unsigned> ngrid( dimension ); for(unsigned i=0; i<dimension; ++i) { if( !pbc[i] ) ngrid[i]=nbin[i] - 1; else ngrid[i]=nbin[i]; } return ngrid; } void GridVessel::getNeighbors( const std::vector<double>& pp, const std::vector<unsigned>& nneigh, unsigned& num_neighbors, std::vector<unsigned>& neighbors ) const { plumed_dbg_assert( bounds_set ); if( gtype == flat ) { plumed_dbg_assert( nneigh.size()==dimension ); std::vector<unsigned> indices( dimension ); for(unsigned i=0; i<dimension; ++i) indices[i] = std::floor( (pp[i]-min[i])/dx[i] ); getNeighbors( indices, nneigh, num_neighbors, neighbors ); } else if( gtype == fibonacci ) { unsigned find = getFibonacciIndex( pp ); num_neighbors = 1 + fib_nlist[find].size(); if( neighbors.size()<num_neighbors ) neighbors.resize( num_neighbors ); neighbors[0]=find; for(unsigned i=0; i<fib_nlist[find].size(); ++i) neighbors[1+i] = fib_nlist[find][i]; } else { plumed_error(); } } void GridVessel::getNeighbors( const std::vector<unsigned>& indices, const std::vector<unsigned>& nneigh, unsigned& num_neighbors, std::vector<unsigned>& neighbors ) const { plumed_dbg_assert( gtype==flat && bounds_set && nneigh.size()==dimension ); unsigned num_neigh=1; std::vector<unsigned> small_bin( dimension ); for(unsigned i=0; i<dimension; ++i) { small_bin[i]=(2*nneigh[i]+1); num_neigh *=small_bin[i]; } if( neighbors.size()!=num_neigh ) neighbors.resize( num_neigh ); num_neighbors=0; std::vector<unsigned> s_indices(dimension), t_indices(dimension); for(unsigned index=0; index<num_neigh; ++index) { bool found=true; convertIndexToIndices( index, small_bin, s_indices ); for(unsigned i=0; i<dimension; ++i) { int i0=s_indices[i]-nneigh[i]+indices[i]; if(!pbc[i] && i0<0) found=false; if(!pbc[i] && i0>=nbin[i]) found=false; if( pbc[i] && i0<0) i0=nbin[i]-(-i0)%nbin[i]; if( pbc[i] && i0>=nbin[i]) i0%=nbin[i]; t_indices[i]=static_cast<unsigned>(i0); } if( found ) { neighbors[num_neighbors]=getIndex( t_indices ); num_neighbors++; } } } void GridVessel::setCubeUnits( const double& units ) { plumed_dbg_assert( gtype==flat ); cube_units=units; } double GridVessel::getCubeUnits() const { plumed_dbg_assert( gtype==flat ); return cube_units; } std::string GridVessel::getInputString() const { std::string mstring="COORDINATES="+arg_names[0]; for(unsigned i=1; i<dimension; ++i) mstring+="," + arg_names[i]; if( gtype==flat ) { mstring += " TYPE=flat PBC="; if( pbc[0] ) mstring +="T"; else mstring +="F"; for(unsigned i=1; i<dimension; ++i) { if( pbc[i] ) mstring +=",T"; else mstring +=",F"; } } else if( gtype==fibonacci ) { mstring += " TYPE=fibonacci"; } return mstring; } double GridVessel::getValueAndDerivatives( const std::vector<double>& x, const unsigned& ind, std::vector<double>& der ) const { plumed_dbg_assert( gtype==flat && der.size()==dimension && !noderiv && ind<getNumberOfComponents() ); double X,X2,X3,value=0; der.assign(der.size(),0.0); std::vector<double> fd(dimension); std::vector<double> C(dimension); std::vector<double> D(dimension); std::vector<double> dder(dimension); std::vector<unsigned> nindices(dimension); std::vector<unsigned> indices(dimension); getIndices( x, indices ); std::vector<unsigned> neigh; getSplineNeighbors( getIndex(indices), neigh ); std::vector<double> xfloor(dimension); getFlatGridCoordinates( getIndex(x), nindices, xfloor ); // loop over neighbors for(unsigned int ipoint=0; ipoint<neigh.size(); ++ipoint) { double grid=getGridElement(neigh[ipoint], ind*(1+dimension) ); for(unsigned j=0; j<dimension; ++j) dder[j] = getGridElement( neigh[ipoint], ind*(1+dimension) + 1 + j ); getIndices( neigh[ipoint], nindices ); double ff=1.0; for(unsigned j=0; j<dimension; ++j) { int x0=1; if(nindices[j]==indices[j]) x0=0; double ddx=dx[j]; X=fabs((x[j]-xfloor[j])/ddx-(double)x0); X2=X*X; X3=X2*X; double yy; if(fabs(grid)<0.0000001) yy=0.0; else yy=-dder[j]/grid; C[j]=(1.0-3.0*X2+2.0*X3) - (x0?-1.0:1.0)*yy*(X-2.0*X2+X3)*ddx; D[j]=( -6.0*X +6.0*X2) - (x0?-1.0:1.0)*yy*(1.0-4.0*X +3.0*X2)*ddx; D[j]*=(x0?-1.0:1.0)/ddx; ff*=C[j]; } for(unsigned j=0; j<dimension; ++j) { fd[j]=D[j]; for(unsigned i=0; i<dimension; ++i) if(i!=j) fd[j]*=C[i]; } value+=grid*ff; for(unsigned j=0; j<dimension; ++j) der[j]+=grid*fd[j]; } return value; } void GridVessel::activateThesePoints( const std::vector<bool>& to_activate ) { plumed_dbg_assert( to_activate.size()==npoints ); for(unsigned i=0; i<npoints; ++i) active[i]=to_activate[i]; } void GridVessel::setForce( const std::vector<double>& inforces ) { plumed_dbg_assert( inforces.size()==npoints ); wasforced=true; for(unsigned i=0; i<npoints; ++i) forces[i]=inforces[i]; } bool GridVessel::wasForced() const { return wasforced; } bool GridVessel::applyForce( std::vector<double>& fforces ) { plumed_dbg_assert( fforces.size()==finalForces.size() ); if( !wasforced ) return false; for(unsigned i=0; i<finalForces.size(); ++i) fforces[i]=finalForces[i]; wasforced=false; return true; } } }