diff --git a/user-doc/tutorials/others/isdb-1.txt b/user-doc/tutorials/others/isdb-1.txt index afec09ab22ac7ab6873fcf1763979ba8b82d9bf2..2d202ea623a5940b1e8781f0bd2afcc317137c03 100644 --- a/user-doc/tutorials/others/isdb-1.txt +++ b/user-doc/tutorials/others/isdb-1.txt @@ -60,17 +60,6 @@ gmx_mpi mdrun -s run.tpr -table table.xvg -tablep table.xvg -plumed plumed-eef1. In order to have a converged sampling for this reference ensemble calculation it is usefull to setup a Metadynamics calculation. In particular we will use \ref PBMETAD because it is then a natural choice for Metadynamic Metainference later. \plumedfile -# this is optional and tell to VIM that this is a PLUMED file -# vim: ft=plumed -# see comments just below this input file -MOLINFO MOLTYPE=protein STRUCTURE=egaawaass.pdb -WHOLEMOLECULES ENTITY0=1-111 - -# EEF1SB Implicit solvation -protein-h: GROUP NDX_FILE=index.ndx NDX_GROUP=Protein-H -solv: IMPLICIT ATOMS=protein-h NOPBC NL_STRIDE=10 NL_BUFFER=0.1 -bias: BIASVALUE ARG=solv - # CVs, Psi9, Phi1 are not defined psi1: TORSION ATOMS=@psi-1 psi2: TORSION ATOMS=@psi-2 @@ -121,74 +110,13 @@ PRINT FILE=ENERGY ARG=bias.bias,pb.bias STRIDE=200 ENDPLUMED \endplumedfile -In this case we are already running a multiple-replica simulation where the sampling is used to parallelise the Metadynamics time-dependent potential through the use of multiple walkers. +In this case we arerunning a multiple-replica simulation where the sampling is used to parallelise the Metadynamics time-dependent potential through the use of multiple walkers. \verbatim mpiexec -np 14 gmx_mpi mdrun -s topolnew -multi 14 -plumed plumed-eef1-pbmetad.dat -table table.xvg -tablep table.xvg >& log.out & \endverbatim \plumedfile -# this is optional and tell to VIM that this is a PLUMED file -# vim: ft=plumed -# see comments just below this input file -MOLINFO MOLTYPE=protein STRUCTURE=egaawaass.pdb -WHOLEMOLECULES ENTITY0=1-111 - -# EEF1SB Implicit solvation -protein-h: GROUP NDX_FILE=index.ndx NDX_GROUP=Protein-H -solv: IMPLICIT ATOMS=protein-h NOPBC NL_STRIDE=10 NL_BUFFER=0.1 -bias: BIASVALUE ARG=solv - -# CVs, Psi9, Phi1 are not defined -psi1: TORSION ATOMS=@psi-1 -psi2: TORSION ATOMS=@psi-2 -psi3: TORSION ATOMS=@psi-3 -psi4: TORSION ATOMS=@psi-4 -psi5: TORSION ATOMS=@psi-5 -psi6: TORSION ATOMS=@psi-6 -psi7: TORSION ATOMS=@psi-7 -psi8: TORSION ATOMS=@psi-8 - -phi2: TORSION ATOMS=@phi-2 -phi3: TORSION ATOMS=@phi-3 -phi4: TORSION ATOMS=@phi-4 -phi5: TORSION ATOMS=@phi-5 -phi6: TORSION ATOMS=@phi-6 -phi7: TORSION ATOMS=@phi-7 -phi8: TORSION ATOMS=@phi-8 -phi9: TORSION ATOMS=@phi-9 - -ahc: ALPHARMSD RESIDUES=all TYPE=OPTIMAL LESS_THAN={RATIONAL R_0=0.12} - -# Bulky Trp residue dihedral -dihtrp_cacb: TORSION ATOMS=67,47,49,52 -dihtrp_cbcg: TORSION ATOMS=47,49,52,53 - -protein-ca: GROUP NDX_FILE=index.ndx NDX_GROUP=C-alpha -gyr: GYRATION TYPE=RADIUS ATOMS=protein-ca NOPBC - -# PBMetaD -PBMETAD ... - LABEL=pb - ARG=phi2,phi3,phi4,phi5,phi6,phi7,phi8,phi9,psi1,psi2,psi3,psi4,psi5,psi6,psi7,psi8,dihtrp_cacb,dihtrp_cbcg,ahc.lessthan - SIGMA=1000 - SIGMA_MIN=0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.001 - SIGMA_MAX=0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.2 - ADAPTIVE=DIFF - HEIGHT=0.5 - PACE=200 - BIASFACTOR=40 - GRID_MIN=-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,-pi,0 - GRID_MAX=pi,pi,pi,pi,pi,pi,pi,pi,pi,pi,pi,pi,pi,pi,pi,pi,pi,pi,5 - GRID_WSTRIDE=5000 - WALKERS_MPI -... PBMETAD - -# output from the collective variable -PRINT FILE=COLVAR ARG=phi2,phi3,phi4,phi5,phi6,phi7,phi8,phi9,psi1,psi2,psi3,psi4,psi5,psi6,psi7,psi8,dihtrp_cacb,dihtrp_cbcg,ahc.lessthan STRIDE=200 -# output from PBMETAD and BIASVALUE -PRINT FILE=ENERGY ARG=bias.bias,pb.bias STRIDE=200 - # EXPERIMENTAL DATA SECTION # RDCs (Grzesiek et al.) @@ -264,7 +192,7 @@ JCOUPLING ... ATOMS1=47,49,52,53 COUPLING1=1.21 LABEL=jncg ... JCOUPLING -# + # Chemical shifts cs: CS2BACKBONE ATOMS=1-111 NRES=9 DATA=data TEMPLATE=egaawaass.pdb @@ -317,14 +245,15 @@ PRINT ARG=cahast.* STRIDE=2000 FILE=ST.RDC.CAHA PRINT ARG=csst.* STRIDE=2000 FILE=ST.CS PRINT ARG=jhanst.*,jhahnst.*,jw5ccyst.*,jw5ncyst.* STRIDE=2000 FILE=ST.J - # metainference entries METAINFERENCE ... ARG=(nh\.rdc_.*),pb.bias PARARG=(nh\.exp_.*) - NOISETYPE=MGAUSS SCALEDATA REWEIGHT OPTSIGMAMEAN=SEM AVERAGING=200 - SCALE_PRIOR=GAUSSIAN SCALE0=8.0 DSCALE=0.5 + REWEIGHT + NOISETYPE=MGAUSS + OPTSIGMAMEAN=SEM AVERAGING=200 + SCALEDATA SCALE_PRIOR=GAUSSIAN SCALE0=8.0 DSCALE=0.5 SIGMA0=5.0 SIGMA_MIN=0.0001 SIGMA_MAX=15.0 DSIGMA=0.1 WRITE_STRIDE=10000 LABEL=byrdcnh @@ -333,8 +262,10 @@ METAINFERENCE ... METAINFERENCE ... ARG=(caha\.rdc_.*),pb.bias PARARG=(caha\.exp_.*) - NOISETYPE=MGAUSS SCALEDATA REWEIGHT OPTSIGMAMEAN=SEM AVERAGING=200 - SCALE_PRIOR=GAUSSIAN SCALE0=9.0 DSCALE=0.5 + REWEIGHT + NOISETYPE=MGAUSS + OPTSIGMAMEAN=SEM AVERAGING=200 + SCALEDATA SCALE_PRIOR=GAUSSIAN SCALE0=9.0 DSCALE=0.5 SIGMA0=5.0 SIGMA_MIN=0.0001 SIGMA_MAX=15.0 DSIGMA=0.1 WRITE_STRIDE=10000 LABEL=byrdccaha @@ -343,7 +274,9 @@ METAINFERENCE ... METAINFERENCE ... ARG=(jhan\.j_.*),(jhahn\.j_.*),(jccg\.j.*),(jncg\.j.*),pb.bias PARARG=(jhan\.exp_.*),(jhahn\.exp_.*),(jccg\.exp.*),(jncg\.exp.*) - NOISETYPE=MGAUSS REWEIGHT OPTSIGMAMEAN=SEM AVERAGING=200 + REWEIGHT + NOISETYPE=MGAUSS + OPTSIGMAMEAN=SEM AVERAGING=200 SIGMA0=5.0 SIGMA_MIN=0.0001 SIGMA_MAX=15.0 DSIGMA=0.1 WRITE_STRIDE=10000 LABEL=byj @@ -352,7 +285,9 @@ METAINFERENCE ... METAINFERENCE ... ARG=(cs\.ca_.*),(cs\.cb_.*),pb.bias PARARG=(cs\.expca.*),(cs\.expcb.*) - NOISETYPE=MOUTLIERS REWEIGHT OPTSIGMAMEAN=SEM AVERAGING=200 + REWEIGHT + NOISETYPE=MOUTLIERS + OPTSIGMAMEAN=SEM AVERAGING=200 SIGMA0=5.0 SIGMA_MIN=0.0001 SIGMA_MAX=15.0 DSIGMA=0.1 WRITE_STRIDE=10000 LABEL=bycs @@ -369,6 +304,14 @@ PRINT ARG=bycs.* STRIDE=200 FILE=BAYES.CS ENDPLUMED \endplumedfile +As for the former case we are running a multiple-replica simulation where in addition to multiple-walker metadynamics we are also coupling the replicas through Metainference. The use +of multiple-walkers metadynamics is here key in order to have the same bias defined for all the replicas. This allows us to calculate a weighted average of the experimental observables +where the weights are defined univocally from the bias \cite Bonomi:2016ge . + +\verbatim +mpiexec -np 14 gmx_mpi mdrun -s topolnew -multi 14 -plumed plumed-eef1-pbmetad-m_m.dat -table table.xvg -tablep table.xvg >& log.out & +\endverbatim + */ link: @subpage isdb-1