diff --git a/src/colvar/DRMSD.cpp b/src/colvar/DRMSD.cpp index 9872c615d96661e4a45d4ed8680e5ac379b9112d..f9959bd576214b28c7b0882bff37cb60ba200995 100644 --- a/src/colvar/DRMSD.cpp +++ b/src/colvar/DRMSD.cpp @@ -45,7 +45,7 @@ often cheaper and easier to calculate the distances between all the pairs of ato between the two structures, \f$\mathbf{X}^a\f$ and \f$\mathbf{X}^b\f$ can then be measured as: \f[ -d(\mathbf{X}^A, \mathbf{X}^B) = \frac{1}{N(N-1)} \sum_{i \ne j} [ d(\mathbf{x}_i^a,\mathbf{x}_j^a) - d(\mathbf{x}_i^b,\mathbf{x}_j^b) ]^2 +d(\mathbf{X}^A, \mathbf{X}^B) = \sqrt{\frac{1}{N(N-1)} \sum_{i \ne j} [ d(\mathbf{x}_i^a,\mathbf{x}_j^a) - d(\mathbf{x}_i^b,\mathbf{x}_j^b) ]^2} \f] where \f$N\f$ is the number of atoms and \f$d(\mathbf{x}_i,\mathbf{x}_j)\f$ represents the distance between diff --git a/src/colvar/ERMSD.cpp b/src/colvar/ERMSD.cpp index feb4513306bf357d57110b7abaf1be552c6d53a7..fc99b888c7787278b91beb906cd678cac83f35d0 100644 --- a/src/colvar/ERMSD.cpp +++ b/src/colvar/ERMSD.cpp @@ -55,12 +55,13 @@ eRMSD measures the distance between structures by considering only the relative 2. Calculate all pairwise distance vectors \f$ \vec{r}_{i,j} \f$ among base centers. -3. Rescale distance vectors as \f$ \tilde{\vec{r}}_{i,j} = (r_x/a,r_y/a,r_z/b) \f$, where \f$ a=b=5 \AA, c= 3 \AA\f$. This rescaling has the effect of weghting more deviations on the z-axis with respect to the x/y directions. +3. Rescale distance vectors as \f$ \tilde{\vec{r}}_{i,j} = (r_x/a,r_y/a,r_z/b) \f$, where a=b=5 \AA, c= 3 \AA. This rescaling has the effect of weghting more deviations on the z-axis with respect to the x/y directions. 4. Calculate the G vectors \f[ -\vec{G}(\tilde{\vec{r}}) = (\sin(\gamma \tilde{r}) \tilde{r}_x/\tilde{r},\sin(\gamma \tilde{r}) \tilde{r}_y/\tilde{r},\sin(\gamma \tilde{r}) \tilde{r}_z/\tilde{r}, 1+\cos(\gamma \tilde{r})) \times \Theta(\tilde{r}_{cutoff}-\tilde{r}) +\vec{G}(\tilde{\vec{r}}) = (\sin(\gamma \tilde{r}) \tilde{r}_x/\tilde{r},\sin(\gamma \tilde{r}) \tilde{r}_y/\tilde{r},\sin(\gamma \tilde{r}) \tilde{r}_z/\tilde{r}, 1+\cos(\gamma \tilde{r})) \times +\frac{\Theta(\tilde{r}_{cutoff}-\tilde{r})}{\gamma} \f] Here, \f$ \gamma = \pi/\tilde{r}_{cutoff}\f$ and \f$ \Theta \f$ is the Heaviside step function. The default cutoff is set to 2.4. diff --git a/user-doc/tutorials/belfast-7.txt b/user-doc/tutorials/belfast-7.txt index b81abd651fd9751472c1e852a54e96533b9542c3..ef3bf26fa199333c18c54afff28973226d7ba1f0 100644 --- a/user-doc/tutorials/belfast-7.txt +++ b/user-doc/tutorials/belfast-7.txt @@ -22,7 +22,7 @@ In PT, exchanges are usually attempted between adjacent temperatures with the following acceptance probability: \f[ -p(i \rightarrow j) = min \{ 1,\Delta_{i,j}^{PT} \}, +p(i \rightarrow j) = min \{ 1,e^{\Delta_{i,j}^{PT}} \}, \f] with