diff --git a/src/bias/MetaD.cpp b/src/bias/MetaD.cpp index 2ef5a3c5be978924830105a7ffe25a1fe4fa22b4..22793dad353843ddd0dd30142b9cf794e2b4874a 100644 --- a/src/bias/MetaD.cpp +++ b/src/bias/MetaD.cpp @@ -373,7 +373,6 @@ private: double getHeight(const vector<double>&); double getBiasAndDerivatives(const vector<double>&,double* der=NULL); double evaluateGaussian(const vector<double>&, const Gaussian&,double* der=NULL); - void finiteDifferenceGaussian(const vector<double>&, const Gaussian&); double getGaussianNormalization( const Gaussian& ); vector<unsigned> getGaussianSupport(const Gaussian&); bool scanOneHill(IFile *ifile, vector<Value> &v, vector<double> ¢er, vector<double> &sigma, double &height, bool &multivariate); @@ -1141,8 +1140,6 @@ double MetaD::getBiasAndDerivatives(const vector<double>& cv, double* der) unsigned rank=comm.Get_rank(); for(unsigned i=rank;i<hills_.size();i+=stride){ bias+=evaluateGaussian(cv,hills_[i],der); - //finite difference test - //finiteDifferenceGaussian(cv,hills_[i]); } comm.Sum(bias); if(der) comm.Sum(der,getNumberOfArguments()); @@ -1433,33 +1430,6 @@ void MetaD::update(){ if(getStep()%(stride_*rewf_ustride_)==0 && nowAddAHill && rewf_grid_.size()>0 ) computeReweightingFactor(); } -void MetaD::finiteDifferenceGaussian(const vector<double>& cv, const Gaussian& hill) -{ - log<<"--------- finiteDifferenceGaussian: size "<<cv.size() <<"------------\n"; - // for each cv - // first get the bias and the derivative - vector<double> oldder(cv.size()); - vector<double> der(cv.size()); - vector<double> mycv(cv.size()); - mycv=cv; - double step=1.e-6; - Random random; - // just displace a tiny bit - for(unsigned i=0;i<cv.size();i++) log<<"CV "<<i<<" V "<<mycv[i]<<"\n"; - for(unsigned i=0;i<cv.size();i++) mycv[i]+=1.e-2*2*(random.RandU01()-0.5); - for(unsigned i=0;i<cv.size();i++) log<<"NENEWWCV "<<i<<" V "<<mycv[i]<<"\n"; - double oldbias=evaluateGaussian(mycv,hill,&oldder[0]); - for(unsigned i=0;i<mycv.size();i++){ - double delta=step*2*(random.RandU01()-0.5); - mycv[i]+=delta; - double newbias=evaluateGaussian(mycv,hill,&der[0]); - log<<"CV "<<i; - log<<" ANAL "<<oldder[i]<<" NUM "<<(newbias-oldbias)/delta<<" DIFF "<<(oldder[i]-(newbias-oldbias)/delta)<<"\n"; - mycv[i]-=delta; - } - log<<"--------- END finiteDifferenceGaussian ------------\n"; -} - /// takes a pointer to the file and a template string with values v and gives back the next center, sigma and height bool MetaD::scanOneHill(IFile *ifile, vector<Value> &tmpvalues, vector<double> ¢er, vector<double> &sigma, double &height , bool &multivariate) {