diff --git a/CHANGES/Unreleased.txt b/CHANGES/Unreleased.txt
index a52390e8d605f7e95568b907038b2f60d18bb07d..99a9b7b7388669d27b36453f583dca5370616569 100644
--- a/CHANGES/Unreleased.txt
+++ b/CHANGES/Unreleased.txt
@@ -29,6 +29,7 @@ Changes from version 2.0 which are relevant for users:
   - Negative strides in atom ranges (e.g. 10-1:-3).
   - \ref COORDINATION and \ref DHENERGY with NLIST now work correctly in replica exchange simulations.
   - Improved multicolvar neighbor lists.
+  - Gromacs 4.6.5 and PLUMED can be now be used to perform energy minimisation.
 - Optimizations:
   - Root-mean-square devations with align weights different from displace weights
     are now considerably faster. This will affect \ref RMSD calculations plus
diff --git a/patches/gromacs-4.6.5.diff/src/mdlib/minimize.c b/patches/gromacs-4.6.5.diff/src/mdlib/minimize.c
new file mode 100644
index 0000000000000000000000000000000000000000..79f002127165bbd84e3c7dc6e9073f06ff6db335
--- /dev/null
+++ b/patches/gromacs-4.6.5.diff/src/mdlib/minimize.c
@@ -0,0 +1,2942 @@
+/*
+ * This file is part of the GROMACS molecular simulation package.
+ *
+ * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
+ * Copyright (c) 2001-2004, The GROMACS development team,
+ * check out http://www.gromacs.org for more information.
+ * Copyright (c) 2012,2013, by the GROMACS development team, led by
+ * David van der Spoel, Berk Hess, Erik Lindahl, and including many
+ * others, as listed in the AUTHORS file in the top-level source
+ * directory and at http://www.gromacs.org.
+ *
+ * GROMACS is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public License
+ * as published by the Free Software Foundation; either version 2.1
+ * of the License, or (at your option) any later version.
+ *
+ * GROMACS is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with GROMACS; if not, see
+ * http://www.gnu.org/licenses, or write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
+ *
+ * If you want to redistribute modifications to GROMACS, please
+ * consider that scientific software is very special. Version
+ * control is crucial - bugs must be traceable. We will be happy to
+ * consider code for inclusion in the official distribution, but
+ * derived work must not be called official GROMACS. Details are found
+ * in the README & COPYING files - if they are missing, get the
+ * official version at http://www.gromacs.org.
+ *
+ * To help us fund GROMACS development, we humbly ask that you cite
+ * the research papers on the package. Check out http://www.gromacs.org.
+ */
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include <string.h>
+#include <time.h>
+#include <math.h>
+#include "sysstuff.h"
+#include "string2.h"
+#include "network.h"
+#include "confio.h"
+#include "copyrite.h"
+#include "smalloc.h"
+#include "nrnb.h"
+#include "main.h"
+#include "force.h"
+#include "macros.h"
+#include "random.h"
+#include "names.h"
+#include "gmx_fatal.h"
+#include "txtdump.h"
+#include "typedefs.h"
+#include "update.h"
+#include "constr.h"
+#include "vec.h"
+#include "statutil.h"
+#include "tgroup.h"
+#include "mdebin.h"
+#include "vsite.h"
+#include "force.h"
+#include "mdrun.h"
+#include "md_support.h"
+#include "domdec.h"
+#include "partdec.h"
+#include "trnio.h"
+#include "sparsematrix.h"
+#include "mtxio.h"
+#include "mdatoms.h"
+#include "ns.h"
+#include "gmx_wallcycle.h"
+#include "mtop_util.h"
+#include "gmxfio.h"
+#include "pme.h"
+#include "bondf.h"
+#include "gmx_omp_nthreads.h"
+#include "md_logging.h"
+
+/* PLUMED */
+#include "../../Plumed.h"
+extern int    plumedswitch;
+extern plumed plumedmain;
+extern void(*plumedcmd)(plumed,const char*,const void*);
+/* END PLUMED */
+
+typedef struct {
+    t_state  s;
+    rvec    *f;
+    real     epot;
+    real     fnorm;
+    real     fmax;
+    int      a_fmax;
+} em_state_t;
+
+static em_state_t *init_em_state()
+{
+    em_state_t *ems;
+
+    snew(ems, 1);
+
+    /* does this need to be here?  Should the array be declared differently (staticaly)in the state definition? */
+    snew(ems->s.lambda, efptNR);
+
+    return ems;
+}
+
+static void print_em_start(FILE *fplog, t_commrec *cr, gmx_runtime_t *runtime,
+                           gmx_wallcycle_t wcycle,
+                           const char *name)
+{
+    char buf[STRLEN];
+
+    runtime_start(runtime);
+
+    sprintf(buf, "Started %s", name);
+    print_date_and_time(fplog, cr->nodeid, buf, NULL);
+
+    wallcycle_start(wcycle, ewcRUN);
+}
+static void em_time_end(FILE *fplog, t_commrec *cr, gmx_runtime_t *runtime,
+                        gmx_wallcycle_t wcycle)
+{
+    wallcycle_stop(wcycle, ewcRUN);
+
+    runtime_end(runtime);
+}
+
+static void sp_header(FILE *out, const char *minimizer, real ftol, int nsteps)
+{
+    fprintf(out, "\n");
+    fprintf(out, "%s:\n", minimizer);
+    fprintf(out, "   Tolerance (Fmax)   = %12.5e\n", ftol);
+    fprintf(out, "   Number of steps    = %12d\n", nsteps);
+}
+
+static void warn_step(FILE *fp, real ftol, gmx_bool bLastStep, gmx_bool bConstrain)
+{
+    char buffer[2048];
+    if (bLastStep)
+    {
+        sprintf(buffer,
+                "\nEnergy minimization reached the maximum number "
+                "of steps before the forces reached the requested "
+                "precision Fmax < %g.\n", ftol);
+    }
+    else
+    {
+        sprintf(buffer,
+                "\nEnergy minimization has stopped, but the forces have "
+                "not converged to the requested precision Fmax < %g (which "
+                "may not be possible for your system). It stopped "
+                "because the algorithm tried to make a new step whose size "
+                "was too small, or there was no change in the energy since "
+                "last step. Either way, we regard the minimization as "
+                "converged to within the available machine precision, "
+                "given your starting configuration and EM parameters.\n%s%s",
+                ftol,
+                sizeof(real) < sizeof(double) ?
+                "\nDouble precision normally gives you higher accuracy, but "
+                "this is often not needed for preparing to run molecular "
+                "dynamics.\n" :
+                "",
+                bConstrain ?
+                "You might need to increase your constraint accuracy, or turn\n"
+                "off constraints altogether (set constraints = none in mdp file)\n" :
+                "");
+    }
+    fputs(wrap_lines(buffer, 78, 0, FALSE), fp);
+}
+
+
+
+static void print_converged(FILE *fp, const char *alg, real ftol,
+                            gmx_large_int_t count, gmx_bool bDone, gmx_large_int_t nsteps,
+                            real epot, real fmax, int nfmax, real fnorm)
+{
+    char buf[STEPSTRSIZE];
+
+    if (bDone)
+    {
+        fprintf(fp, "\n%s converged to Fmax < %g in %s steps\n",
+                alg, ftol, gmx_step_str(count, buf));
+    }
+    else if (count < nsteps)
+    {
+        fprintf(fp, "\n%s converged to machine precision in %s steps,\n"
+                "but did not reach the requested Fmax < %g.\n",
+                alg, gmx_step_str(count, buf), ftol);
+    }
+    else
+    {
+        fprintf(fp, "\n%s did not converge to Fmax < %g in %s steps.\n",
+                alg, ftol, gmx_step_str(count, buf));
+    }
+
+#ifdef GMX_DOUBLE
+    fprintf(fp, "Potential Energy  = %21.14e\n", epot);
+    fprintf(fp, "Maximum force     = %21.14e on atom %d\n", fmax, nfmax+1);
+    fprintf(fp, "Norm of force     = %21.14e\n", fnorm);
+#else
+    fprintf(fp, "Potential Energy  = %14.7e\n", epot);
+    fprintf(fp, "Maximum force     = %14.7e on atom %d\n", fmax, nfmax+1);
+    fprintf(fp, "Norm of force     = %14.7e\n", fnorm);
+#endif
+}
+
+static void get_f_norm_max(t_commrec *cr,
+                           t_grpopts *opts, t_mdatoms *mdatoms, rvec *f,
+                           real *fnorm, real *fmax, int *a_fmax)
+{
+    double fnorm2, *sum;
+    real   fmax2, fmax2_0, fam;
+    int    la_max, a_max, start, end, i, m, gf;
+
+    /* This routine finds the largest force and returns it.
+     * On parallel machines the global max is taken.
+     */
+    fnorm2 = 0;
+    fmax2  = 0;
+    la_max = -1;
+    gf     = 0;
+    start  = mdatoms->start;
+    end    = mdatoms->homenr + start;
+    if (mdatoms->cFREEZE)
+    {
+        for (i = start; i < end; i++)
+        {
+            gf  = mdatoms->cFREEZE[i];
+            fam = 0;
+            for (m = 0; m < DIM; m++)
+            {
+                if (!opts->nFreeze[gf][m])
+                {
+                    fam += sqr(f[i][m]);
+                }
+            }
+            fnorm2 += fam;
+            if (fam > fmax2)
+            {
+                fmax2  = fam;
+                la_max = i;
+            }
+        }
+    }
+    else
+    {
+        for (i = start; i < end; i++)
+        {
+            fam     = norm2(f[i]);
+            fnorm2 += fam;
+            if (fam > fmax2)
+            {
+                fmax2  = fam;
+                la_max = i;
+            }
+        }
+    }
+
+    if (la_max >= 0 && DOMAINDECOMP(cr))
+    {
+        a_max = cr->dd->gatindex[la_max];
+    }
+    else
+    {
+        a_max = la_max;
+    }
+    if (PAR(cr))
+    {
+        snew(sum, 2*cr->nnodes+1);
+        sum[2*cr->nodeid]   = fmax2;
+        sum[2*cr->nodeid+1] = a_max;
+        sum[2*cr->nnodes]   = fnorm2;
+        gmx_sumd(2*cr->nnodes+1, sum, cr);
+        fnorm2 = sum[2*cr->nnodes];
+        /* Determine the global maximum */
+        for (i = 0; i < cr->nnodes; i++)
+        {
+            if (sum[2*i] > fmax2)
+            {
+                fmax2 = sum[2*i];
+                a_max = (int)(sum[2*i+1] + 0.5);
+            }
+        }
+        sfree(sum);
+    }
+
+    if (fnorm)
+    {
+        *fnorm = sqrt(fnorm2);
+    }
+    if (fmax)
+    {
+        *fmax  = sqrt(fmax2);
+    }
+    if (a_fmax)
+    {
+        *a_fmax = a_max;
+    }
+}
+
+static void get_state_f_norm_max(t_commrec *cr,
+                                 t_grpopts *opts, t_mdatoms *mdatoms,
+                                 em_state_t *ems)
+{
+    get_f_norm_max(cr, opts, mdatoms, ems->f, &ems->fnorm, &ems->fmax, &ems->a_fmax);
+}
+
+void init_em(FILE *fplog, const char *title,
+             t_commrec *cr, t_inputrec *ir,
+             t_state *state_global, gmx_mtop_t *top_global,
+             em_state_t *ems, gmx_localtop_t **top,
+             rvec **f, rvec **f_global,
+             t_nrnb *nrnb, rvec mu_tot,
+             t_forcerec *fr, gmx_enerdata_t **enerd,
+             t_graph **graph, t_mdatoms *mdatoms, gmx_global_stat_t *gstat,
+             gmx_vsite_t *vsite, gmx_constr_t constr,
+             int nfile, const t_filenm fnm[],
+             gmx_mdoutf_t **outf, t_mdebin **mdebin)
+{
+    int  start, homenr, i;
+    real dvdl_constr;
+
+    if (fplog)
+    {
+        fprintf(fplog, "Initiating %s\n", title);
+    }
+
+    state_global->ngtc = 0;
+
+    /* Initialize lambda variables */
+    initialize_lambdas(fplog, ir, &(state_global->fep_state), state_global->lambda, NULL);
+
+    init_nrnb(nrnb);
+
+    if (DOMAINDECOMP(cr))
+    {
+        *top = dd_init_local_top(top_global);
+
+        dd_init_local_state(cr->dd, state_global, &ems->s);
+
+        *f = NULL;
+
+        /* Distribute the charge groups over the nodes from the master node */
+        dd_partition_system(fplog, ir->init_step, cr, TRUE, 1,
+                            state_global, top_global, ir,
+                            &ems->s, &ems->f, mdatoms, *top,
+                            fr, vsite, NULL, constr,
+                            nrnb, NULL, FALSE);
+        dd_store_state(cr->dd, &ems->s);
+
+        if (ir->nstfout)
+        {
+            snew(*f_global, top_global->natoms);
+        }
+        else
+        {
+            *f_global = NULL;
+        }
+        *graph = NULL;
+    }
+    else
+    {
+        snew(*f, top_global->natoms);
+
+        /* Just copy the state */
+        ems->s = *state_global;
+        snew(ems->s.x, ems->s.nalloc);
+        snew(ems->f, ems->s.nalloc);
+        for (i = 0; i < state_global->natoms; i++)
+        {
+            copy_rvec(state_global->x[i], ems->s.x[i]);
+        }
+        copy_mat(state_global->box, ems->s.box);
+
+        if (PAR(cr) && ir->eI != eiNM)
+        {
+            /* Initialize the particle decomposition and split the topology */
+            *top = split_system(fplog, top_global, ir, cr);
+
+            pd_cg_range(cr, &fr->cg0, &fr->hcg);
+        }
+        else
+        {
+            *top = gmx_mtop_generate_local_top(top_global, ir);
+        }
+        *f_global = *f;
+
+        forcerec_set_excl_load(fr, *top, cr);
+
+        setup_bonded_threading(fr, &(*top)->idef);
+
+        if (ir->ePBC != epbcNONE && !fr->bMolPBC)
+        {
+            *graph = mk_graph(fplog, &((*top)->idef), 0, top_global->natoms, FALSE, FALSE);
+        }
+        else
+        {
+            *graph = NULL;
+        }
+
+        if (PARTDECOMP(cr))
+        {
+            pd_at_range(cr, &start, &homenr);
+            homenr -= start;
+        }
+        else
+        {
+            start  = 0;
+            homenr = top_global->natoms;
+        }
+        atoms2md(top_global, ir, 0, NULL, start, homenr, mdatoms);
+        update_mdatoms(mdatoms, state_global->lambda[efptFEP]);
+
+        if (vsite)
+        {
+            set_vsite_top(vsite, *top, mdatoms, cr);
+        }
+    }
+
+    if (constr)
+    {
+        if (ir->eConstrAlg == econtSHAKE &&
+            gmx_mtop_ftype_count(top_global, F_CONSTR) > 0)
+        {
+            gmx_fatal(FARGS, "Can not do energy minimization with %s, use %s\n",
+                      econstr_names[econtSHAKE], econstr_names[econtLINCS]);
+        }
+
+        if (!DOMAINDECOMP(cr))
+        {
+            set_constraints(constr, *top, ir, mdatoms, cr);
+        }
+
+        if (!ir->bContinuation)
+        {
+            /* Constrain the starting coordinates */
+            dvdl_constr = 0;
+            constrain(PAR(cr) ? NULL : fplog, TRUE, TRUE, constr, &(*top)->idef,
+                      ir, NULL, cr, -1, 0, mdatoms,
+                      ems->s.x, ems->s.x, NULL, fr->bMolPBC, ems->s.box,
+                      ems->s.lambda[efptFEP], &dvdl_constr,
+                      NULL, NULL, nrnb, econqCoord, FALSE, 0, 0);
+        }
+    }
+
+    if (PAR(cr))
+    {
+        *gstat = global_stat_init(ir);
+    }
+
+    *outf = init_mdoutf(nfile, fnm, 0, cr, ir, NULL);
+
+    snew(*enerd, 1);
+    init_enerdata(top_global->groups.grps[egcENER].nr, ir->fepvals->n_lambda,
+                  *enerd);
+
+    if (mdebin != NULL)
+    {
+        /* Init bin for energy stuff */
+        *mdebin = init_mdebin((*outf)->fp_ene, top_global, ir, NULL);
+    }
+
+    clear_rvec(mu_tot);
+    calc_shifts(ems->s.box, fr->shift_vec);
+
+    /* PLUMED */
+    if(plumedswitch){
+      if(cr->ms && cr->ms->nsim>1) {
+        if(MASTER(cr)) (*plumedcmd) (plumedmain,"GREX setMPIIntercomm",&cr->ms->mpi_comm_masters);
+        if(PAR(cr)){
+          if(DOMAINDECOMP(cr)) {
+            (*plumedcmd) (plumedmain,"GREX setMPIIntracomm",&cr->dd->mpi_comm_all);
+          }else{
+            (*plumedcmd) (plumedmain,"GREX setMPIIntracomm",&cr->mpi_comm_mysim);
+          }
+        }
+        (*plumedcmd) (plumedmain,"GREX init",NULL);
+      }
+      if(PAR(cr)){
+        if(DOMAINDECOMP(cr)) {
+          (*plumedcmd) (plumedmain,"setMPIComm",&cr->dd->mpi_comm_all);
+        }else{
+          (*plumedcmd) (plumedmain,"setMPIComm",&cr->mpi_comm_mysim);
+        }
+      }
+      (*plumedcmd) (plumedmain,"setNatoms",&top_global->natoms);
+      (*plumedcmd) (plumedmain,"setMDEngine","gromacs");
+      (*plumedcmd) (plumedmain,"setLog",fplog);
+      real real_delta_t;
+      real_delta_t=ir->delta_t;
+      (*plumedcmd) (plumedmain,"setTimestep",&real_delta_t);
+      (*plumedcmd) (plumedmain,"init",NULL);
+
+      if(PAR(cr)){
+        if(DOMAINDECOMP(cr)) {
+          (*plumedcmd) (plumedmain,"setAtomsNlocal",&cr->dd->nat_home);
+          (*plumedcmd) (plumedmain,"setAtomsGatindex",cr->dd->gatindex);
+        }else{
+          (*plumedcmd) (plumedmain,"setAtomsNlocal",&mdatoms->homenr);
+          (*plumedcmd) (plumedmain,"setAtomsContiguous",&mdatoms->start);
+        }
+      }
+    }
+    /* END PLUMED */
+
+}
+
+static void finish_em(FILE *fplog, t_commrec *cr, gmx_mdoutf_t *outf,
+                      gmx_runtime_t *runtime, gmx_wallcycle_t wcycle)
+{
+    if (!(cr->duty & DUTY_PME))
+    {
+        /* Tell the PME only node to finish */
+        gmx_pme_send_finish(cr);
+    }
+
+    done_mdoutf(outf);
+
+    em_time_end(fplog, cr, runtime, wcycle);
+}
+
+static void swap_em_state(em_state_t *ems1, em_state_t *ems2)
+{
+    em_state_t tmp;
+
+    tmp   = *ems1;
+    *ems1 = *ems2;
+    *ems2 = tmp;
+}
+
+static void copy_em_coords(em_state_t *ems, t_state *state)
+{
+    int i;
+
+    for (i = 0; (i < state->natoms); i++)
+    {
+        copy_rvec(ems->s.x[i], state->x[i]);
+    }
+}
+
+static void write_em_traj(FILE *fplog, t_commrec *cr,
+                          gmx_mdoutf_t *outf,
+                          gmx_bool bX, gmx_bool bF, const char *confout,
+                          gmx_mtop_t *top_global,
+                          t_inputrec *ir, gmx_large_int_t step,
+                          em_state_t *state,
+                          t_state *state_global, rvec *f_global)
+{
+    int mdof_flags;
+
+    if ((bX || bF || confout != NULL) && !DOMAINDECOMP(cr))
+    {
+        copy_em_coords(state, state_global);
+        f_global = state->f;
+    }
+
+    mdof_flags = 0;
+    if (bX)
+    {
+        mdof_flags |= MDOF_X;
+    }
+    if (bF)
+    {
+        mdof_flags |= MDOF_F;
+    }
+    write_traj(fplog, cr, outf, mdof_flags,
+               top_global, step, (double)step,
+               &state->s, state_global, state->f, f_global, NULL, NULL);
+
+    if (confout != NULL && MASTER(cr))
+    {
+        if (ir->ePBC != epbcNONE && !ir->bPeriodicMols && DOMAINDECOMP(cr))
+        {
+            /* Make molecules whole only for confout writing */
+            do_pbc_mtop(fplog, ir->ePBC, state_global->box, top_global,
+                        state_global->x);
+        }
+
+        write_sto_conf_mtop(confout,
+                            *top_global->name, top_global,
+                            state_global->x, NULL, ir->ePBC, state_global->box);
+    }
+}
+
+static void do_em_step(t_commrec *cr, t_inputrec *ir, t_mdatoms *md,
+                       gmx_bool bMolPBC,
+                       em_state_t *ems1, real a, rvec *f, em_state_t *ems2,
+                       gmx_constr_t constr, gmx_localtop_t *top,
+                       t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+                       gmx_large_int_t count)
+
+{
+    t_state *s1, *s2;
+    int      i;
+    int      start, end;
+    rvec    *x1, *x2;
+    real     dvdl_constr;
+
+    s1 = &ems1->s;
+    s2 = &ems2->s;
+
+    if (DOMAINDECOMP(cr) && s1->ddp_count != cr->dd->ddp_count)
+    {
+        gmx_incons("state mismatch in do_em_step");
+    }
+
+    s2->flags = s1->flags;
+
+    if (s2->nalloc != s1->nalloc)
+    {
+        s2->nalloc = s1->nalloc;
+        srenew(s2->x, s1->nalloc);
+        srenew(ems2->f,  s1->nalloc);
+        if (s2->flags & (1<<estCGP))
+        {
+            srenew(s2->cg_p,  s1->nalloc);
+        }
+    }
+
+    s2->natoms = s1->natoms;
+    copy_mat(s1->box, s2->box);
+    /* Copy free energy state */
+    for (i = 0; i < efptNR; i++)
+    {
+        s2->lambda[i] = s1->lambda[i];
+    }
+    copy_mat(s1->box, s2->box);
+
+    start = md->start;
+    end   = md->start + md->homenr;
+
+    x1 = s1->x;
+    x2 = s2->x;
+
+#pragma omp parallel num_threads(gmx_omp_nthreads_get(emntUpdate))
+    {
+        int gf, i, m;
+
+        gf = 0;
+#pragma omp for schedule(static) nowait
+        for (i = start; i < end; i++)
+        {
+            if (md->cFREEZE)
+            {
+                gf = md->cFREEZE[i];
+            }
+            for (m = 0; m < DIM; m++)
+            {
+                if (ir->opts.nFreeze[gf][m])
+                {
+                    x2[i][m] = x1[i][m];
+                }
+                else
+                {
+                    x2[i][m] = x1[i][m] + a*f[i][m];
+                }
+            }
+        }
+
+        if (s2->flags & (1<<estCGP))
+        {
+            /* Copy the CG p vector */
+            x1 = s1->cg_p;
+            x2 = s2->cg_p;
+#pragma omp for schedule(static) nowait
+            for (i = start; i < end; i++)
+            {
+                copy_rvec(x1[i], x2[i]);
+            }
+        }
+
+        if (DOMAINDECOMP(cr))
+        {
+            s2->ddp_count = s1->ddp_count;
+            if (s2->cg_gl_nalloc < s1->cg_gl_nalloc)
+            {
+#pragma omp barrier
+                s2->cg_gl_nalloc = s1->cg_gl_nalloc;
+                srenew(s2->cg_gl, s2->cg_gl_nalloc);
+#pragma omp barrier
+            }
+            s2->ncg_gl = s1->ncg_gl;
+#pragma omp for schedule(static) nowait
+            for (i = 0; i < s2->ncg_gl; i++)
+            {
+                s2->cg_gl[i] = s1->cg_gl[i];
+            }
+            s2->ddp_count_cg_gl = s1->ddp_count_cg_gl;
+        }
+    }
+
+    if (constr)
+    {
+        wallcycle_start(wcycle, ewcCONSTR);
+        dvdl_constr = 0;
+        constrain(NULL, TRUE, TRUE, constr, &top->idef,
+                  ir, NULL, cr, count, 0, md,
+                  s1->x, s2->x, NULL, bMolPBC, s2->box,
+                  s2->lambda[efptBONDED], &dvdl_constr,
+                  NULL, NULL, nrnb, econqCoord, FALSE, 0, 0);
+        wallcycle_stop(wcycle, ewcCONSTR);
+    }
+}
+
+static void em_dd_partition_system(FILE *fplog, int step, t_commrec *cr,
+                                   gmx_mtop_t *top_global, t_inputrec *ir,
+                                   em_state_t *ems, gmx_localtop_t *top,
+                                   t_mdatoms *mdatoms, t_forcerec *fr,
+                                   gmx_vsite_t *vsite, gmx_constr_t constr,
+                                   t_nrnb *nrnb, gmx_wallcycle_t wcycle)
+{
+    /* Repartition the domain decomposition */
+    wallcycle_start(wcycle, ewcDOMDEC);
+    dd_partition_system(fplog, step, cr, FALSE, 1,
+                        NULL, top_global, ir,
+                        &ems->s, &ems->f,
+                        mdatoms, top, fr, vsite, NULL, constr,
+                        nrnb, wcycle, FALSE);
+    dd_store_state(cr->dd, &ems->s);
+    wallcycle_stop(wcycle, ewcDOMDEC);
+}
+
+static void evaluate_energy(FILE *fplog, gmx_bool bVerbose, t_commrec *cr,
+                            t_state *state_global, gmx_mtop_t *top_global,
+                            em_state_t *ems, gmx_localtop_t *top,
+                            t_inputrec *inputrec,
+                            t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+                            gmx_global_stat_t gstat,
+                            gmx_vsite_t *vsite, gmx_constr_t constr,
+                            t_fcdata *fcd,
+                            t_graph *graph, t_mdatoms *mdatoms,
+                            t_forcerec *fr, rvec mu_tot,
+                            gmx_enerdata_t *enerd, tensor vir, tensor pres,
+                            gmx_large_int_t count, gmx_bool bFirst)
+{
+    real     t;
+    gmx_bool bNS;
+    int      nabnsb;
+    tensor   force_vir, shake_vir, ekin;
+    real     dvdl_constr, prescorr, enercorr, dvdlcorr;
+    real     terminate = 0;
+
+    /* Set the time to the initial time, the time does not change during EM */
+    t = inputrec->init_t;
+
+    if (bFirst ||
+        (DOMAINDECOMP(cr) && ems->s.ddp_count < cr->dd->ddp_count))
+    {
+        /* This the first state or an old state used before the last ns */
+        bNS = TRUE;
+    }
+    else
+    {
+        bNS = FALSE;
+        if (inputrec->nstlist > 0)
+        {
+            bNS = TRUE;
+        }
+        else if (inputrec->nstlist == -1)
+        {
+            nabnsb = natoms_beyond_ns_buffer(inputrec, fr, &top->cgs, NULL, ems->s.x);
+            if (PAR(cr))
+            {
+                gmx_sumi(1, &nabnsb, cr);
+            }
+            bNS = (nabnsb > 0);
+        }
+    }
+
+    if (vsite)
+    {
+        construct_vsites(fplog, vsite, ems->s.x, nrnb, 1, NULL,
+                         top->idef.iparams, top->idef.il,
+                         fr->ePBC, fr->bMolPBC, graph, cr, ems->s.box);
+    }
+
+    if (DOMAINDECOMP(cr))
+    {
+        if (bNS)
+        {
+            /* Repartition the domain decomposition */
+            em_dd_partition_system(fplog, count, cr, top_global, inputrec,
+                                   ems, top, mdatoms, fr, vsite, constr,
+                                   nrnb, wcycle);
+            /* PLUMED */
+            if(plumedswitch){
+              (*plumedcmd) (plumedmain,"setAtomsNlocal",&cr->dd->nat_home);
+              (*plumedcmd) (plumedmain,"setAtomsGatindex",cr->dd->gatindex);
+            }
+            /* END PLUMED */
+        }
+    }
+
+    /* Calc force & energy on new trial position  */
+    /* do_force always puts the charge groups in the box and shifts again
+     * We do not unshift, so molecules are always whole in congrad.c
+     */
+    /* PLUMED */
+    int plumedNeedsEnergy=0;
+    if(plumedswitch){
+      long int lstep=count; (*plumedcmd)(plumedmain,"setStepLong",&count);
+      (*plumedcmd) (plumedmain,"setPositions",&ems->s.x[mdatoms->start][0]);
+      (*plumedcmd) (plumedmain,"setMasses",&mdatoms->massT[mdatoms->start]);
+      (*plumedcmd) (plumedmain,"setCharges",&mdatoms->chargeA[mdatoms->start]);
+      (*plumedcmd) (plumedmain,"setBox",&ems->s.box[0][0]);
+      (*plumedcmd) (plumedmain,"prepareCalc",NULL);
+      (*plumedcmd) (plumedmain,"setForces",&ems->f[mdatoms->start][0]);
+      (*plumedcmd) (plumedmain,"setVirial",&force_vir[0][0]);
+      (*plumedcmd) (plumedmain,"isEnergyNeeded",&plumedNeedsEnergy);
+    }
+    /* END PLUMED */
+    do_force(fplog, cr, inputrec,
+             count, nrnb, wcycle, top, top_global, &top_global->groups,
+             ems->s.box, ems->s.x, &ems->s.hist,
+             ems->f, force_vir, mdatoms, enerd, fcd,
+             ems->s.lambda, graph, fr, vsite, mu_tot, t, NULL, NULL, TRUE,
+             GMX_FORCE_STATECHANGED | GMX_FORCE_ALLFORCES |
+             GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY |
+             (bNS ? GMX_FORCE_NS | GMX_FORCE_DO_LR : 0));
+    /* PLUMED */
+    if(plumedswitch){
+      if(plumedNeedsEnergy) {
+        (*plumedcmd) (plumedmain,"setEnergy",&enerd->term[F_EPOT]);
+        (*plumedcmd) (plumedmain,"performCalc",NULL);
+      }
+    }
+    /* END PLUMED */
+
+    /* Clear the unused shake virial and pressure */
+    clear_mat(shake_vir);
+    clear_mat(pres);
+
+    /* Communicate stuff when parallel */
+    if (PAR(cr) && inputrec->eI != eiNM)
+    {
+        wallcycle_start(wcycle, ewcMoveE);
+
+        global_stat(fplog, gstat, cr, enerd, force_vir, shake_vir, mu_tot,
+                    inputrec, NULL, NULL, NULL, 1, &terminate,
+                    top_global, &ems->s, FALSE,
+                    CGLO_ENERGY |
+                    CGLO_PRESSURE |
+                    CGLO_CONSTRAINT |
+                    CGLO_FIRSTITERATE);
+
+        wallcycle_stop(wcycle, ewcMoveE);
+    }
+
+    /* Calculate long range corrections to pressure and energy */
+    calc_dispcorr(fplog, inputrec, fr, count, top_global->natoms, ems->s.box, ems->s.lambda[efptVDW],
+                  pres, force_vir, &prescorr, &enercorr, &dvdlcorr);
+    enerd->term[F_DISPCORR] = enercorr;
+    enerd->term[F_EPOT]    += enercorr;
+    enerd->term[F_PRES]    += prescorr;
+    enerd->term[F_DVDL]    += dvdlcorr;
+
+    ems->epot = enerd->term[F_EPOT];
+
+    if (constr)
+    {
+        /* Project out the constraint components of the force */
+        wallcycle_start(wcycle, ewcCONSTR);
+        dvdl_constr = 0;
+        constrain(NULL, FALSE, FALSE, constr, &top->idef,
+                  inputrec, NULL, cr, count, 0, mdatoms,
+                  ems->s.x, ems->f, ems->f, fr->bMolPBC, ems->s.box,
+                  ems->s.lambda[efptBONDED], &dvdl_constr,
+                  NULL, &shake_vir, nrnb, econqForceDispl, FALSE, 0, 0);
+        if (fr->bSepDVDL && fplog)
+        {
+            fprintf(fplog, sepdvdlformat, "Constraints", t, dvdl_constr);
+        }
+        enerd->term[F_DVDL_CONSTR] += dvdl_constr;
+        m_add(force_vir, shake_vir, vir);
+        wallcycle_stop(wcycle, ewcCONSTR);
+    }
+    else
+    {
+        copy_mat(force_vir, vir);
+    }
+
+    clear_mat(ekin);
+    enerd->term[F_PRES] =
+        calc_pres(fr->ePBC, inputrec->nwall, ems->s.box, ekin, vir, pres);
+
+    sum_dhdl(enerd, ems->s.lambda, inputrec->fepvals);
+
+    if (EI_ENERGY_MINIMIZATION(inputrec->eI))
+    {
+        get_state_f_norm_max(cr, &(inputrec->opts), mdatoms, ems);
+    }
+}
+
+static double reorder_partsum(t_commrec *cr, t_grpopts *opts, t_mdatoms *mdatoms,
+                              gmx_mtop_t *mtop,
+                              em_state_t *s_min, em_state_t *s_b)
+{
+    rvec          *fm, *fb, *fmg;
+    t_block       *cgs_gl;
+    int            ncg, *cg_gl, *index, c, cg, i, a0, a1, a, gf, m;
+    double         partsum;
+    unsigned char *grpnrFREEZE;
+
+    if (debug)
+    {
+        fprintf(debug, "Doing reorder_partsum\n");
+    }
+
+    fm = s_min->f;
+    fb = s_b->f;
+
+    cgs_gl = dd_charge_groups_global(cr->dd);
+    index  = cgs_gl->index;
+
+    /* Collect fm in a global vector fmg.
+     * This conflicts with the spirit of domain decomposition,
+     * but to fully optimize this a much more complicated algorithm is required.
+     */
+    snew(fmg, mtop->natoms);
+
+    ncg   = s_min->s.ncg_gl;
+    cg_gl = s_min->s.cg_gl;
+    i     = 0;
+    for (c = 0; c < ncg; c++)
+    {
+        cg = cg_gl[c];
+        a0 = index[cg];
+        a1 = index[cg+1];
+        for (a = a0; a < a1; a++)
+        {
+            copy_rvec(fm[i], fmg[a]);
+            i++;
+        }
+    }
+    gmx_sum(mtop->natoms*3, fmg[0], cr);
+
+    /* Now we will determine the part of the sum for the cgs in state s_b */
+    ncg         = s_b->s.ncg_gl;
+    cg_gl       = s_b->s.cg_gl;
+    partsum     = 0;
+    i           = 0;
+    gf          = 0;
+    grpnrFREEZE = mtop->groups.grpnr[egcFREEZE];
+    for (c = 0; c < ncg; c++)
+    {
+        cg = cg_gl[c];
+        a0 = index[cg];
+        a1 = index[cg+1];
+        for (a = a0; a < a1; a++)
+        {
+            if (mdatoms->cFREEZE && grpnrFREEZE)
+            {
+                gf = grpnrFREEZE[i];
+            }
+            for (m = 0; m < DIM; m++)
+            {
+                if (!opts->nFreeze[gf][m])
+                {
+                    partsum += (fb[i][m] - fmg[a][m])*fb[i][m];
+                }
+            }
+            i++;
+        }
+    }
+
+    sfree(fmg);
+
+    return partsum;
+}
+
+static real pr_beta(t_commrec *cr, t_grpopts *opts, t_mdatoms *mdatoms,
+                    gmx_mtop_t *mtop,
+                    em_state_t *s_min, em_state_t *s_b)
+{
+    rvec  *fm, *fb;
+    double sum;
+    int    gf, i, m;
+
+    /* This is just the classical Polak-Ribiere calculation of beta;
+     * it looks a bit complicated since we take freeze groups into account,
+     * and might have to sum it in parallel runs.
+     */
+
+    if (!DOMAINDECOMP(cr) ||
+        (s_min->s.ddp_count == cr->dd->ddp_count &&
+         s_b->s.ddp_count   == cr->dd->ddp_count))
+    {
+        fm  = s_min->f;
+        fb  = s_b->f;
+        sum = 0;
+        gf  = 0;
+        /* This part of code can be incorrect with DD,
+         * since the atom ordering in s_b and s_min might differ.
+         */
+        for (i = mdatoms->start; i < mdatoms->start+mdatoms->homenr; i++)
+        {
+            if (mdatoms->cFREEZE)
+            {
+                gf = mdatoms->cFREEZE[i];
+            }
+            for (m = 0; m < DIM; m++)
+            {
+                if (!opts->nFreeze[gf][m])
+                {
+                    sum += (fb[i][m] - fm[i][m])*fb[i][m];
+                }
+            }
+        }
+    }
+    else
+    {
+        /* We need to reorder cgs while summing */
+        sum = reorder_partsum(cr, opts, mdatoms, mtop, s_min, s_b);
+    }
+    if (PAR(cr))
+    {
+        gmx_sumd(1, &sum, cr);
+    }
+
+    return sum/sqr(s_min->fnorm);
+}
+
+double do_cg(FILE *fplog, t_commrec *cr,
+             int nfile, const t_filenm fnm[],
+             const output_env_t oenv, gmx_bool bVerbose, gmx_bool bCompact,
+             int nstglobalcomm,
+             gmx_vsite_t *vsite, gmx_constr_t constr,
+             int stepout,
+             t_inputrec *inputrec,
+             gmx_mtop_t *top_global, t_fcdata *fcd,
+             t_state *state_global,
+             t_mdatoms *mdatoms,
+             t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+             gmx_edsam_t ed,
+             t_forcerec *fr,
+             int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
+             gmx_membed_t membed,
+             real cpt_period, real max_hours,
+             const char *deviceOptions,
+             unsigned long Flags,
+             gmx_runtime_t *runtime)
+{
+    const char       *CG = "Polak-Ribiere Conjugate Gradients";
+
+    em_state_t       *s_min, *s_a, *s_b, *s_c;
+    gmx_localtop_t   *top;
+    gmx_enerdata_t   *enerd;
+    rvec             *f;
+    gmx_global_stat_t gstat;
+    t_graph          *graph;
+    rvec             *f_global, *p, *sf, *sfm;
+    double            gpa, gpb, gpc, tmp, sum[2], minstep;
+    real              fnormn;
+    real              stepsize;
+    real              a, b, c, beta = 0.0;
+    real              epot_repl = 0;
+    real              pnorm;
+    t_mdebin         *mdebin;
+    gmx_bool          converged, foundlower;
+    rvec              mu_tot;
+    gmx_bool          do_log = FALSE, do_ene = FALSE, do_x, do_f;
+    tensor            vir, pres;
+    int               number_steps, neval = 0, nstcg = inputrec->nstcgsteep;
+    gmx_mdoutf_t     *outf;
+    int               i, m, gf, step, nminstep;
+    real              terminate = 0;
+
+    step = 0;
+
+    s_min = init_em_state();
+    s_a   = init_em_state();
+    s_b   = init_em_state();
+    s_c   = init_em_state();
+
+    /* Init em and store the local state in s_min */
+    init_em(fplog, CG, cr, inputrec,
+            state_global, top_global, s_min, &top, &f, &f_global,
+            nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
+            nfile, fnm, &outf, &mdebin);
+
+    /* Print to log file */
+    print_em_start(fplog, cr, runtime, wcycle, CG);
+
+    /* Max number of steps */
+    number_steps = inputrec->nsteps;
+
+    if (MASTER(cr))
+    {
+        sp_header(stderr, CG, inputrec->em_tol, number_steps);
+    }
+    if (fplog)
+    {
+        sp_header(fplog, CG, inputrec->em_tol, number_steps);
+    }
+
+    /* Call the force routine and some auxiliary (neighboursearching etc.) */
+    /* do_force always puts the charge groups in the box and shifts again
+     * We do not unshift, so molecules are always whole in congrad.c
+     */
+    evaluate_energy(fplog, bVerbose, cr,
+                    state_global, top_global, s_min, top,
+                    inputrec, nrnb, wcycle, gstat,
+                    vsite, constr, fcd, graph, mdatoms, fr,
+                    mu_tot, enerd, vir, pres, -1, TRUE);
+    where();
+
+    if (MASTER(cr))
+    {
+        /* Copy stuff to the energy bin for easy printing etc. */
+        upd_mdebin(mdebin, FALSE, FALSE, (double)step,
+                   mdatoms->tmass, enerd, &s_min->s, inputrec->fepvals, inputrec->expandedvals, s_min->s.box,
+                   NULL, NULL, vir, pres, NULL, mu_tot, constr);
+
+        print_ebin_header(fplog, step, step, s_min->s.lambda[efptFEP]);
+        print_ebin(outf->fp_ene, TRUE, FALSE, FALSE, fplog, step, step, eprNORMAL,
+                   TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+    }
+    where();
+
+    /* Estimate/guess the initial stepsize */
+    stepsize = inputrec->em_stepsize/s_min->fnorm;
+
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "   F-max             = %12.5e on atom %d\n",
+                s_min->fmax, s_min->a_fmax+1);
+        fprintf(stderr, "   F-Norm            = %12.5e\n",
+                s_min->fnorm/sqrt(state_global->natoms));
+        fprintf(stderr, "\n");
+        /* and copy to the log file too... */
+        fprintf(fplog, "   F-max             = %12.5e on atom %d\n",
+                s_min->fmax, s_min->a_fmax+1);
+        fprintf(fplog, "   F-Norm            = %12.5e\n",
+                s_min->fnorm/sqrt(state_global->natoms));
+        fprintf(fplog, "\n");
+    }
+    /* Start the loop over CG steps.
+     * Each successful step is counted, and we continue until
+     * we either converge or reach the max number of steps.
+     */
+    converged = FALSE;
+    for (step = 0; (number_steps < 0 || (number_steps >= 0 && step <= number_steps)) && !converged; step++)
+    {
+
+        /* start taking steps in a new direction
+         * First time we enter the routine, beta=0, and the direction is
+         * simply the negative gradient.
+         */
+
+        /* Calculate the new direction in p, and the gradient in this direction, gpa */
+        p   = s_min->s.cg_p;
+        sf  = s_min->f;
+        gpa = 0;
+        gf  = 0;
+        for (i = mdatoms->start; i < mdatoms->start+mdatoms->homenr; i++)
+        {
+            if (mdatoms->cFREEZE)
+            {
+                gf = mdatoms->cFREEZE[i];
+            }
+            for (m = 0; m < DIM; m++)
+            {
+                if (!inputrec->opts.nFreeze[gf][m])
+                {
+                    p[i][m] = sf[i][m] + beta*p[i][m];
+                    gpa    -= p[i][m]*sf[i][m];
+                    /* f is negative gradient, thus the sign */
+                }
+                else
+                {
+                    p[i][m] = 0;
+                }
+            }
+        }
+
+        /* Sum the gradient along the line across CPUs */
+        if (PAR(cr))
+        {
+            gmx_sumd(1, &gpa, cr);
+        }
+
+        /* Calculate the norm of the search vector */
+        get_f_norm_max(cr, &(inputrec->opts), mdatoms, p, &pnorm, NULL, NULL);
+
+        /* Just in case stepsize reaches zero due to numerical precision... */
+        if (stepsize <= 0)
+        {
+            stepsize = inputrec->em_stepsize/pnorm;
+        }
+
+        /*
+         * Double check the value of the derivative in the search direction.
+         * If it is positive it must be due to the old information in the
+         * CG formula, so just remove that and start over with beta=0.
+         * This corresponds to a steepest descent step.
+         */
+        if (gpa > 0)
+        {
+            beta = 0;
+            step--;   /* Don't count this step since we are restarting */
+            continue; /* Go back to the beginning of the big for-loop */
+        }
+
+        /* Calculate minimum allowed stepsize, before the average (norm)
+         * relative change in coordinate is smaller than precision
+         */
+        minstep = 0;
+        for (i = mdatoms->start; i < mdatoms->start+mdatoms->homenr; i++)
+        {
+            for (m = 0; m < DIM; m++)
+            {
+                tmp = fabs(s_min->s.x[i][m]);
+                if (tmp < 1.0)
+                {
+                    tmp = 1.0;
+                }
+                tmp      = p[i][m]/tmp;
+                minstep += tmp*tmp;
+            }
+        }
+        /* Add up from all CPUs */
+        if (PAR(cr))
+        {
+            gmx_sumd(1, &minstep, cr);
+        }
+
+        minstep = GMX_REAL_EPS/sqrt(minstep/(3*state_global->natoms));
+
+        if (stepsize < minstep)
+        {
+            converged = TRUE;
+            break;
+        }
+
+        /* Write coordinates if necessary */
+        do_x = do_per_step(step, inputrec->nstxout);
+        do_f = do_per_step(step, inputrec->nstfout);
+
+        write_em_traj(fplog, cr, outf, do_x, do_f, NULL,
+                      top_global, inputrec, step,
+                      s_min, state_global, f_global);
+
+        /* Take a step downhill.
+         * In theory, we should minimize the function along this direction.
+         * That is quite possible, but it turns out to take 5-10 function evaluations
+         * for each line. However, we dont really need to find the exact minimum -
+         * it is much better to start a new CG step in a modified direction as soon
+         * as we are close to it. This will save a lot of energy evaluations.
+         *
+         * In practice, we just try to take a single step.
+         * If it worked (i.e. lowered the energy), we increase the stepsize but
+         * the continue straight to the next CG step without trying to find any minimum.
+         * If it didn't work (higher energy), there must be a minimum somewhere between
+         * the old position and the new one.
+         *
+         * Due to the finite numerical accuracy, it turns out that it is a good idea
+         * to even accept a SMALL increase in energy, if the derivative is still downhill.
+         * This leads to lower final energies in the tests I've done. / Erik
+         */
+        s_a->epot = s_min->epot;
+        a         = 0.0;
+        c         = a + stepsize; /* reference position along line is zero */
+
+        if (DOMAINDECOMP(cr) && s_min->s.ddp_count < cr->dd->ddp_count)
+        {
+            em_dd_partition_system(fplog, step, cr, top_global, inputrec,
+                                   s_min, top, mdatoms, fr, vsite, constr,
+                                   nrnb, wcycle);
+        }
+
+        /* Take a trial step (new coords in s_c) */
+        do_em_step(cr, inputrec, mdatoms, fr->bMolPBC, s_min, c, s_min->s.cg_p, s_c,
+                   constr, top, nrnb, wcycle, -1);
+
+        neval++;
+        /* Calculate energy for the trial step */
+        evaluate_energy(fplog, bVerbose, cr,
+                        state_global, top_global, s_c, top,
+                        inputrec, nrnb, wcycle, gstat,
+                        vsite, constr, fcd, graph, mdatoms, fr,
+                        mu_tot, enerd, vir, pres, -1, FALSE);
+
+        /* Calc derivative along line */
+        p   = s_c->s.cg_p;
+        sf  = s_c->f;
+        gpc = 0;
+        for (i = mdatoms->start; i < mdatoms->start+mdatoms->homenr; i++)
+        {
+            for (m = 0; m < DIM; m++)
+            {
+                gpc -= p[i][m]*sf[i][m]; /* f is negative gradient, thus the sign */
+            }
+        }
+        /* Sum the gradient along the line across CPUs */
+        if (PAR(cr))
+        {
+            gmx_sumd(1, &gpc, cr);
+        }
+
+        /* This is the max amount of increase in energy we tolerate */
+        tmp = sqrt(GMX_REAL_EPS)*fabs(s_a->epot);
+
+        /* Accept the step if the energy is lower, or if it is not significantly higher
+         * and the line derivative is still negative.
+         */
+        if (s_c->epot < s_a->epot || (gpc < 0 && s_c->epot < (s_a->epot + tmp)))
+        {
+            foundlower = TRUE;
+            /* Great, we found a better energy. Increase step for next iteration
+             * if we are still going down, decrease it otherwise
+             */
+            if (gpc < 0)
+            {
+                stepsize *= 1.618034; /* The golden section */
+            }
+            else
+            {
+                stepsize *= 0.618034; /* 1/golden section */
+            }
+        }
+        else
+        {
+            /* New energy is the same or higher. We will have to do some work
+             * to find a smaller value in the interval. Take smaller step next time!
+             */
+            foundlower = FALSE;
+            stepsize  *= 0.618034;
+        }
+
+
+
+
+        /* OK, if we didn't find a lower value we will have to locate one now - there must
+         * be one in the interval [a=0,c].
+         * The same thing is valid here, though: Don't spend dozens of iterations to find
+         * the line minimum. We try to interpolate based on the derivative at the endpoints,
+         * and only continue until we find a lower value. In most cases this means 1-2 iterations.
+         *
+         * I also have a safeguard for potentially really patological functions so we never
+         * take more than 20 steps before we give up ...
+         *
+         * If we already found a lower value we just skip this step and continue to the update.
+         */
+        if (!foundlower)
+        {
+            nminstep = 0;
+
+            do
+            {
+                /* Select a new trial point.
+                 * If the derivatives at points a & c have different sign we interpolate to zero,
+                 * otherwise just do a bisection.
+                 */
+                if (gpa < 0 && gpc > 0)
+                {
+                    b = a + gpa*(a-c)/(gpc-gpa);
+                }
+                else
+                {
+                    b = 0.5*(a+c);
+                }
+
+                /* safeguard if interpolation close to machine accuracy causes errors:
+                 * never go outside the interval
+                 */
+                if (b <= a || b >= c)
+                {
+                    b = 0.5*(a+c);
+                }
+
+                if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
+                {
+                    /* Reload the old state */
+                    em_dd_partition_system(fplog, -1, cr, top_global, inputrec,
+                                           s_min, top, mdatoms, fr, vsite, constr,
+                                           nrnb, wcycle);
+                }
+
+                /* Take a trial step to this new point - new coords in s_b */
+                do_em_step(cr, inputrec, mdatoms, fr->bMolPBC, s_min, b, s_min->s.cg_p, s_b,
+                           constr, top, nrnb, wcycle, -1);
+
+                neval++;
+                /* Calculate energy for the trial step */
+                evaluate_energy(fplog, bVerbose, cr,
+                                state_global, top_global, s_b, top,
+                                inputrec, nrnb, wcycle, gstat,
+                                vsite, constr, fcd, graph, mdatoms, fr,
+                                mu_tot, enerd, vir, pres, -1, FALSE);
+
+                /* p does not change within a step, but since the domain decomposition
+                 * might change, we have to use cg_p of s_b here.
+                 */
+                p   = s_b->s.cg_p;
+                sf  = s_b->f;
+                gpb = 0;
+                for (i = mdatoms->start; i < mdatoms->start+mdatoms->homenr; i++)
+                {
+                    for (m = 0; m < DIM; m++)
+                    {
+                        gpb -= p[i][m]*sf[i][m]; /* f is negative gradient, thus the sign */
+                    }
+                }
+                /* Sum the gradient along the line across CPUs */
+                if (PAR(cr))
+                {
+                    gmx_sumd(1, &gpb, cr);
+                }
+
+                if (debug)
+                {
+                    fprintf(debug, "CGE: EpotA %f EpotB %f EpotC %f gpb %f\n",
+                            s_a->epot, s_b->epot, s_c->epot, gpb);
+                }
+
+                epot_repl = s_b->epot;
+
+                /* Keep one of the intervals based on the value of the derivative at the new point */
+                if (gpb > 0)
+                {
+                    /* Replace c endpoint with b */
+                    swap_em_state(s_b, s_c);
+                    c   = b;
+                    gpc = gpb;
+                }
+                else
+                {
+                    /* Replace a endpoint with b */
+                    swap_em_state(s_b, s_a);
+                    a   = b;
+                    gpa = gpb;
+                }
+
+                /*
+                 * Stop search as soon as we find a value smaller than the endpoints.
+                 * Never run more than 20 steps, no matter what.
+                 */
+                nminstep++;
+            }
+            while ((epot_repl > s_a->epot || epot_repl > s_c->epot) &&
+                   (nminstep < 20));
+
+            if (fabs(epot_repl - s_min->epot) < fabs(s_min->epot)*GMX_REAL_EPS ||
+                nminstep >= 20)
+            {
+                /* OK. We couldn't find a significantly lower energy.
+                 * If beta==0 this was steepest descent, and then we give up.
+                 * If not, set beta=0 and restart with steepest descent before quitting.
+                 */
+                if (beta == 0.0)
+                {
+                    /* Converged */
+                    converged = TRUE;
+                    break;
+                }
+                else
+                {
+                    /* Reset memory before giving up */
+                    beta = 0.0;
+                    continue;
+                }
+            }
+
+            /* Select min energy state of A & C, put the best in B.
+             */
+            if (s_c->epot < s_a->epot)
+            {
+                if (debug)
+                {
+                    fprintf(debug, "CGE: C (%f) is lower than A (%f), moving C to B\n",
+                            s_c->epot, s_a->epot);
+                }
+                swap_em_state(s_b, s_c);
+                gpb = gpc;
+                b   = c;
+            }
+            else
+            {
+                if (debug)
+                {
+                    fprintf(debug, "CGE: A (%f) is lower than C (%f), moving A to B\n",
+                            s_a->epot, s_c->epot);
+                }
+                swap_em_state(s_b, s_a);
+                gpb = gpa;
+                b   = a;
+            }
+
+        }
+        else
+        {
+            if (debug)
+            {
+                fprintf(debug, "CGE: Found a lower energy %f, moving C to B\n",
+                        s_c->epot);
+            }
+            swap_em_state(s_b, s_c);
+            gpb = gpc;
+            b   = c;
+        }
+
+        /* new search direction */
+        /* beta = 0 means forget all memory and restart with steepest descents. */
+        if (nstcg && ((step % nstcg) == 0))
+        {
+            beta = 0.0;
+        }
+        else
+        {
+            /* s_min->fnorm cannot be zero, because then we would have converged
+             * and broken out.
+             */
+
+            /* Polak-Ribiere update.
+             * Change to fnorm2/fnorm2_old for Fletcher-Reeves
+             */
+            beta = pr_beta(cr, &inputrec->opts, mdatoms, top_global, s_min, s_b);
+        }
+        /* Limit beta to prevent oscillations */
+        if (fabs(beta) > 5.0)
+        {
+            beta = 0.0;
+        }
+
+
+        /* update positions */
+        swap_em_state(s_min, s_b);
+        gpa = gpb;
+
+        /* Print it if necessary */
+        if (MASTER(cr))
+        {
+            if (bVerbose)
+            {
+                fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
+                        step, s_min->epot, s_min->fnorm/sqrt(state_global->natoms),
+                        s_min->fmax, s_min->a_fmax+1);
+            }
+            /* Store the new (lower) energies */
+            upd_mdebin(mdebin, FALSE, FALSE, (double)step,
+                       mdatoms->tmass, enerd, &s_min->s, inputrec->fepvals, inputrec->expandedvals, s_min->s.box,
+                       NULL, NULL, vir, pres, NULL, mu_tot, constr);
+
+            do_log = do_per_step(step, inputrec->nstlog);
+            do_ene = do_per_step(step, inputrec->nstenergy);
+            if (do_log)
+            {
+                print_ebin_header(fplog, step, step, s_min->s.lambda[efptFEP]);
+            }
+            print_ebin(outf->fp_ene, do_ene, FALSE, FALSE,
+                       do_log ? fplog : NULL, step, step, eprNORMAL,
+                       TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+        }
+
+        /* Stop when the maximum force lies below tolerance.
+         * If we have reached machine precision, converged is already set to true.
+         */
+        converged = converged || (s_min->fmax < inputrec->em_tol);
+
+    } /* End of the loop */
+
+    if (converged)
+    {
+        step--; /* we never took that last step in this case */
+
+    }
+    if (s_min->fmax > inputrec->em_tol)
+    {
+        if (MASTER(cr))
+        {
+            warn_step(stderr, inputrec->em_tol, step-1 == number_steps, FALSE);
+            warn_step(fplog, inputrec->em_tol, step-1 == number_steps, FALSE);
+        }
+        converged = FALSE;
+    }
+
+    if (MASTER(cr))
+    {
+        /* If we printed energy and/or logfile last step (which was the last step)
+         * we don't have to do it again, but otherwise print the final values.
+         */
+        if (!do_log)
+        {
+            /* Write final value to log since we didn't do anything the last step */
+            print_ebin_header(fplog, step, step, s_min->s.lambda[efptFEP]);
+        }
+        if (!do_ene || !do_log)
+        {
+            /* Write final energy file entries */
+            print_ebin(outf->fp_ene, !do_ene, FALSE, FALSE,
+                       !do_log ? fplog : NULL, step, step, eprNORMAL,
+                       TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+        }
+    }
+
+    /* Print some stuff... */
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "\nwriting lowest energy coordinates.\n");
+    }
+
+    /* IMPORTANT!
+     * For accurate normal mode calculation it is imperative that we
+     * store the last conformation into the full precision binary trajectory.
+     *
+     * However, we should only do it if we did NOT already write this step
+     * above (which we did if do_x or do_f was true).
+     */
+    do_x = !do_per_step(step, inputrec->nstxout);
+    do_f = (inputrec->nstfout > 0 && !do_per_step(step, inputrec->nstfout));
+
+    write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm),
+                  top_global, inputrec, step,
+                  s_min, state_global, f_global);
+
+    fnormn = s_min->fnorm/sqrt(state_global->natoms);
+
+    if (MASTER(cr))
+    {
+        print_converged(stderr, CG, inputrec->em_tol, step, converged, number_steps,
+                        s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
+        print_converged(fplog, CG, inputrec->em_tol, step, converged, number_steps,
+                        s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
+
+        fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
+    }
+
+    finish_em(fplog, cr, outf, runtime, wcycle);
+
+    /* To print the actual number of steps we needed somewhere */
+    runtime->nsteps_done = step;
+
+    return 0;
+} /* That's all folks */
+
+
+double do_lbfgs(FILE *fplog, t_commrec *cr,
+                int nfile, const t_filenm fnm[],
+                const output_env_t oenv, gmx_bool bVerbose, gmx_bool bCompact,
+                int nstglobalcomm,
+                gmx_vsite_t *vsite, gmx_constr_t constr,
+                int stepout,
+                t_inputrec *inputrec,
+                gmx_mtop_t *top_global, t_fcdata *fcd,
+                t_state *state,
+                t_mdatoms *mdatoms,
+                t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+                gmx_edsam_t ed,
+                t_forcerec *fr,
+                int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
+                gmx_membed_t membed,
+                real cpt_period, real max_hours,
+                const char *deviceOptions,
+                unsigned long Flags,
+                gmx_runtime_t *runtime)
+{
+    static const char *LBFGS = "Low-Memory BFGS Minimizer";
+    em_state_t         ems;
+    gmx_localtop_t    *top;
+    gmx_enerdata_t    *enerd;
+    rvec              *f;
+    gmx_global_stat_t  gstat;
+    t_graph           *graph;
+    rvec              *f_global;
+    int                ncorr, nmaxcorr, point, cp, neval, nminstep;
+    double             stepsize, gpa, gpb, gpc, tmp, minstep;
+    real              *rho, *alpha, *ff, *xx, *p, *s, *lastx, *lastf, **dx, **dg;
+    real              *xa, *xb, *xc, *fa, *fb, *fc, *xtmp, *ftmp;
+    real               a, b, c, maxdelta, delta;
+    real               diag, Epot0, Epot, EpotA, EpotB, EpotC;
+    real               dgdx, dgdg, sq, yr, beta;
+    t_mdebin          *mdebin;
+    gmx_bool           converged, first;
+    rvec               mu_tot;
+    real               fnorm, fmax;
+    gmx_bool           do_log, do_ene, do_x, do_f, foundlower, *frozen;
+    tensor             vir, pres;
+    int                start, end, number_steps;
+    gmx_mdoutf_t      *outf;
+    int                i, k, m, n, nfmax, gf, step;
+    int                mdof_flags;
+    /* not used */
+    real               terminate;
+
+    if (PAR(cr))
+    {
+        gmx_fatal(FARGS, "Cannot do parallel L-BFGS Minimization - yet.\n");
+    }
+
+    if (NULL != constr)
+    {
+        gmx_fatal(FARGS, "The combination of constraints and L-BFGS minimization is not implemented. Either do not use constraints, or use another minimizer (e.g. steepest descent).");
+    }
+
+    n        = 3*state->natoms;
+    nmaxcorr = inputrec->nbfgscorr;
+
+    /* Allocate memory */
+    /* Use pointers to real so we dont have to loop over both atoms and
+     * dimensions all the time...
+     * x/f are allocated as rvec *, so make new x0/f0 pointers-to-real
+     * that point to the same memory.
+     */
+    snew(xa, n);
+    snew(xb, n);
+    snew(xc, n);
+    snew(fa, n);
+    snew(fb, n);
+    snew(fc, n);
+    snew(frozen, n);
+
+    snew(p, n);
+    snew(lastx, n);
+    snew(lastf, n);
+    snew(rho, nmaxcorr);
+    snew(alpha, nmaxcorr);
+
+    snew(dx, nmaxcorr);
+    for (i = 0; i < nmaxcorr; i++)
+    {
+        snew(dx[i], n);
+    }
+
+    snew(dg, nmaxcorr);
+    for (i = 0; i < nmaxcorr; i++)
+    {
+        snew(dg[i], n);
+    }
+
+    step  = 0;
+    neval = 0;
+
+    /* Init em */
+    init_em(fplog, LBFGS, cr, inputrec,
+            state, top_global, &ems, &top, &f, &f_global,
+            nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
+            nfile, fnm, &outf, &mdebin);
+    /* Do_lbfgs is not completely updated like do_steep and do_cg,
+     * so we free some memory again.
+     */
+    sfree(ems.s.x);
+    sfree(ems.f);
+
+    xx = (real *)state->x;
+    ff = (real *)f;
+
+    start = mdatoms->start;
+    end   = mdatoms->homenr + start;
+
+    /* Print to log file */
+    print_em_start(fplog, cr, runtime, wcycle, LBFGS);
+
+    do_log = do_ene = do_x = do_f = TRUE;
+
+    /* Max number of steps */
+    number_steps = inputrec->nsteps;
+
+    /* Create a 3*natoms index to tell whether each degree of freedom is frozen */
+    gf = 0;
+    for (i = start; i < end; i++)
+    {
+        if (mdatoms->cFREEZE)
+        {
+            gf = mdatoms->cFREEZE[i];
+        }
+        for (m = 0; m < DIM; m++)
+        {
+            frozen[3*i+m] = inputrec->opts.nFreeze[gf][m];
+        }
+    }
+    if (MASTER(cr))
+    {
+        sp_header(stderr, LBFGS, inputrec->em_tol, number_steps);
+    }
+    if (fplog)
+    {
+        sp_header(fplog, LBFGS, inputrec->em_tol, number_steps);
+    }
+
+    if (vsite)
+    {
+        construct_vsites(fplog, vsite, state->x, nrnb, 1, NULL,
+                         top->idef.iparams, top->idef.il,
+                         fr->ePBC, fr->bMolPBC, graph, cr, state->box);
+    }
+
+    /* Call the force routine and some auxiliary (neighboursearching etc.) */
+    /* do_force always puts the charge groups in the box and shifts again
+     * We do not unshift, so molecules are always whole
+     */
+    neval++;
+    ems.s.x = state->x;
+    ems.f   = f;
+    evaluate_energy(fplog, bVerbose, cr,
+                    state, top_global, &ems, top,
+                    inputrec, nrnb, wcycle, gstat,
+                    vsite, constr, fcd, graph, mdatoms, fr,
+                    mu_tot, enerd, vir, pres, -1, TRUE);
+    where();
+
+    if (MASTER(cr))
+    {
+        /* Copy stuff to the energy bin for easy printing etc. */
+        upd_mdebin(mdebin, FALSE, FALSE, (double)step,
+                   mdatoms->tmass, enerd, state, inputrec->fepvals, inputrec->expandedvals, state->box,
+                   NULL, NULL, vir, pres, NULL, mu_tot, constr);
+
+        print_ebin_header(fplog, step, step, state->lambda[efptFEP]);
+        print_ebin(outf->fp_ene, TRUE, FALSE, FALSE, fplog, step, step, eprNORMAL,
+                   TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+    }
+    where();
+
+    /* This is the starting energy */
+    Epot = enerd->term[F_EPOT];
+
+    fnorm = ems.fnorm;
+    fmax  = ems.fmax;
+    nfmax = ems.a_fmax;
+
+    /* Set the initial step.
+     * since it will be multiplied by the non-normalized search direction
+     * vector (force vector the first time), we scale it by the
+     * norm of the force.
+     */
+
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "Using %d BFGS correction steps.\n\n", nmaxcorr);
+        fprintf(stderr, "   F-max             = %12.5e on atom %d\n", fmax, nfmax+1);
+        fprintf(stderr, "   F-Norm            = %12.5e\n", fnorm/sqrt(state->natoms));
+        fprintf(stderr, "\n");
+        /* and copy to the log file too... */
+        fprintf(fplog, "Using %d BFGS correction steps.\n\n", nmaxcorr);
+        fprintf(fplog, "   F-max             = %12.5e on atom %d\n", fmax, nfmax+1);
+        fprintf(fplog, "   F-Norm            = %12.5e\n", fnorm/sqrt(state->natoms));
+        fprintf(fplog, "\n");
+    }
+
+    point = 0;
+    for (i = 0; i < n; i++)
+    {
+        if (!frozen[i])
+        {
+            dx[point][i] = ff[i]; /* Initial search direction */
+        }
+        else
+        {
+            dx[point][i] = 0;
+        }
+    }
+
+    stepsize  = 1.0/fnorm;
+    converged = FALSE;
+
+    /* Start the loop over BFGS steps.
+     * Each successful step is counted, and we continue until
+     * we either converge or reach the max number of steps.
+     */
+
+    ncorr = 0;
+
+    /* Set the gradient from the force */
+    converged = FALSE;
+    for (step = 0; (number_steps < 0 || (number_steps >= 0 && step <= number_steps)) && !converged; step++)
+    {
+
+        /* Write coordinates if necessary */
+        do_x = do_per_step(step, inputrec->nstxout);
+        do_f = do_per_step(step, inputrec->nstfout);
+
+        mdof_flags = 0;
+        if (do_x)
+        {
+            mdof_flags |= MDOF_X;
+        }
+
+        if (do_f)
+        {
+            mdof_flags |= MDOF_F;
+        }
+
+        write_traj(fplog, cr, outf, mdof_flags,
+                   top_global, step, (real)step, state, state, f, f, NULL, NULL);
+
+        /* Do the linesearching in the direction dx[point][0..(n-1)] */
+
+        /* pointer to current direction - point=0 first time here */
+        s = dx[point];
+
+        /* calculate line gradient */
+        for (gpa = 0, i = 0; i < n; i++)
+        {
+            gpa -= s[i]*ff[i];
+        }
+
+        /* Calculate minimum allowed stepsize, before the average (norm)
+         * relative change in coordinate is smaller than precision
+         */
+        for (minstep = 0, i = 0; i < n; i++)
+        {
+            tmp = fabs(xx[i]);
+            if (tmp < 1.0)
+            {
+                tmp = 1.0;
+            }
+            tmp      = s[i]/tmp;
+            minstep += tmp*tmp;
+        }
+        minstep = GMX_REAL_EPS/sqrt(minstep/n);
+
+        if (stepsize < minstep)
+        {
+            converged = TRUE;
+            break;
+        }
+
+        /* Store old forces and coordinates */
+        for (i = 0; i < n; i++)
+        {
+            lastx[i] = xx[i];
+            lastf[i] = ff[i];
+        }
+        Epot0 = Epot;
+
+        first = TRUE;
+
+        for (i = 0; i < n; i++)
+        {
+            xa[i] = xx[i];
+        }
+
+        /* Take a step downhill.
+         * In theory, we should minimize the function along this direction.
+         * That is quite possible, but it turns out to take 5-10 function evaluations
+         * for each line. However, we dont really need to find the exact minimum -
+         * it is much better to start a new BFGS step in a modified direction as soon
+         * as we are close to it. This will save a lot of energy evaluations.
+         *
+         * In practice, we just try to take a single step.
+         * If it worked (i.e. lowered the energy), we increase the stepsize but
+         * the continue straight to the next BFGS step without trying to find any minimum.
+         * If it didn't work (higher energy), there must be a minimum somewhere between
+         * the old position and the new one.
+         *
+         * Due to the finite numerical accuracy, it turns out that it is a good idea
+         * to even accept a SMALL increase in energy, if the derivative is still downhill.
+         * This leads to lower final energies in the tests I've done. / Erik
+         */
+        foundlower = FALSE;
+        EpotA      = Epot0;
+        a          = 0.0;
+        c          = a + stepsize; /* reference position along line is zero */
+
+        /* Check stepsize first. We do not allow displacements
+         * larger than emstep.
+         */
+        do
+        {
+            c        = a + stepsize;
+            maxdelta = 0;
+            for (i = 0; i < n; i++)
+            {
+                delta = c*s[i];
+                if (delta > maxdelta)
+                {
+                    maxdelta = delta;
+                }
+            }
+            if (maxdelta > inputrec->em_stepsize)
+            {
+                stepsize *= 0.1;
+            }
+        }
+        while (maxdelta > inputrec->em_stepsize);
+
+        /* Take a trial step */
+        for (i = 0; i < n; i++)
+        {
+            xc[i] = lastx[i] + c*s[i];
+        }
+
+        neval++;
+        /* Calculate energy for the trial step */
+        ems.s.x = (rvec *)xc;
+        ems.f   = (rvec *)fc;
+        evaluate_energy(fplog, bVerbose, cr,
+                        state, top_global, &ems, top,
+                        inputrec, nrnb, wcycle, gstat,
+                        vsite, constr, fcd, graph, mdatoms, fr,
+                        mu_tot, enerd, vir, pres, step, FALSE);
+        EpotC = ems.epot;
+
+        /* Calc derivative along line */
+        for (gpc = 0, i = 0; i < n; i++)
+        {
+            gpc -= s[i]*fc[i]; /* f is negative gradient, thus the sign */
+        }
+        /* Sum the gradient along the line across CPUs */
+        if (PAR(cr))
+        {
+            gmx_sumd(1, &gpc, cr);
+        }
+
+        /* This is the max amount of increase in energy we tolerate */
+        tmp = sqrt(GMX_REAL_EPS)*fabs(EpotA);
+
+        /* Accept the step if the energy is lower, or if it is not significantly higher
+         * and the line derivative is still negative.
+         */
+        if (EpotC < EpotA || (gpc < 0 && EpotC < (EpotA+tmp)))
+        {
+            foundlower = TRUE;
+            /* Great, we found a better energy. Increase step for next iteration
+             * if we are still going down, decrease it otherwise
+             */
+            if (gpc < 0)
+            {
+                stepsize *= 1.618034; /* The golden section */
+            }
+            else
+            {
+                stepsize *= 0.618034; /* 1/golden section */
+            }
+        }
+        else
+        {
+            /* New energy is the same or higher. We will have to do some work
+             * to find a smaller value in the interval. Take smaller step next time!
+             */
+            foundlower = FALSE;
+            stepsize  *= 0.618034;
+        }
+
+        /* OK, if we didn't find a lower value we will have to locate one now - there must
+         * be one in the interval [a=0,c].
+         * The same thing is valid here, though: Don't spend dozens of iterations to find
+         * the line minimum. We try to interpolate based on the derivative at the endpoints,
+         * and only continue until we find a lower value. In most cases this means 1-2 iterations.
+         *
+         * I also have a safeguard for potentially really patological functions so we never
+         * take more than 20 steps before we give up ...
+         *
+         * If we already found a lower value we just skip this step and continue to the update.
+         */
+
+        if (!foundlower)
+        {
+
+            nminstep = 0;
+            do
+            {
+                /* Select a new trial point.
+                 * If the derivatives at points a & c have different sign we interpolate to zero,
+                 * otherwise just do a bisection.
+                 */
+
+                if (gpa < 0 && gpc > 0)
+                {
+                    b = a + gpa*(a-c)/(gpc-gpa);
+                }
+                else
+                {
+                    b = 0.5*(a+c);
+                }
+
+                /* safeguard if interpolation close to machine accuracy causes errors:
+                 * never go outside the interval
+                 */
+                if (b <= a || b >= c)
+                {
+                    b = 0.5*(a+c);
+                }
+
+                /* Take a trial step */
+                for (i = 0; i < n; i++)
+                {
+                    xb[i] = lastx[i] + b*s[i];
+                }
+
+                neval++;
+                /* Calculate energy for the trial step */
+                ems.s.x = (rvec *)xb;
+                ems.f   = (rvec *)fb;
+                evaluate_energy(fplog, bVerbose, cr,
+                                state, top_global, &ems, top,
+                                inputrec, nrnb, wcycle, gstat,
+                                vsite, constr, fcd, graph, mdatoms, fr,
+                                mu_tot, enerd, vir, pres, step, FALSE);
+                EpotB = ems.epot;
+
+                fnorm = ems.fnorm;
+
+                for (gpb = 0, i = 0; i < n; i++)
+                {
+                    gpb -= s[i]*fb[i]; /* f is negative gradient, thus the sign */
+
+                }
+                /* Sum the gradient along the line across CPUs */
+                if (PAR(cr))
+                {
+                    gmx_sumd(1, &gpb, cr);
+                }
+
+                /* Keep one of the intervals based on the value of the derivative at the new point */
+                if (gpb > 0)
+                {
+                    /* Replace c endpoint with b */
+                    EpotC = EpotB;
+                    c     = b;
+                    gpc   = gpb;
+                    /* swap coord pointers b/c */
+                    xtmp = xb;
+                    ftmp = fb;
+                    xb   = xc;
+                    fb   = fc;
+                    xc   = xtmp;
+                    fc   = ftmp;
+                }
+                else
+                {
+                    /* Replace a endpoint with b */
+                    EpotA = EpotB;
+                    a     = b;
+                    gpa   = gpb;
+                    /* swap coord pointers a/b */
+                    xtmp = xb;
+                    ftmp = fb;
+                    xb   = xa;
+                    fb   = fa;
+                    xa   = xtmp;
+                    fa   = ftmp;
+                }
+
+                /*
+                 * Stop search as soon as we find a value smaller than the endpoints,
+                 * or if the tolerance is below machine precision.
+                 * Never run more than 20 steps, no matter what.
+                 */
+                nminstep++;
+            }
+            while ((EpotB > EpotA || EpotB > EpotC) && (nminstep < 20));
+
+            if (fabs(EpotB-Epot0) < GMX_REAL_EPS || nminstep >= 20)
+            {
+                /* OK. We couldn't find a significantly lower energy.
+                 * If ncorr==0 this was steepest descent, and then we give up.
+                 * If not, reset memory to restart as steepest descent before quitting.
+                 */
+                if (ncorr == 0)
+                {
+                    /* Converged */
+                    converged = TRUE;
+                    break;
+                }
+                else
+                {
+                    /* Reset memory */
+                    ncorr = 0;
+                    /* Search in gradient direction */
+                    for (i = 0; i < n; i++)
+                    {
+                        dx[point][i] = ff[i];
+                    }
+                    /* Reset stepsize */
+                    stepsize = 1.0/fnorm;
+                    continue;
+                }
+            }
+
+            /* Select min energy state of A & C, put the best in xx/ff/Epot
+             */
+            if (EpotC < EpotA)
+            {
+                Epot = EpotC;
+                /* Use state C */
+                for (i = 0; i < n; i++)
+                {
+                    xx[i] = xc[i];
+                    ff[i] = fc[i];
+                }
+                stepsize = c;
+            }
+            else
+            {
+                Epot = EpotA;
+                /* Use state A */
+                for (i = 0; i < n; i++)
+                {
+                    xx[i] = xa[i];
+                    ff[i] = fa[i];
+                }
+                stepsize = a;
+            }
+
+        }
+        else
+        {
+            /* found lower */
+            Epot = EpotC;
+            /* Use state C */
+            for (i = 0; i < n; i++)
+            {
+                xx[i] = xc[i];
+                ff[i] = fc[i];
+            }
+            stepsize = c;
+        }
+
+        /* Update the memory information, and calculate a new
+         * approximation of the inverse hessian
+         */
+
+        /* Have new data in Epot, xx, ff */
+        if (ncorr < nmaxcorr)
+        {
+            ncorr++;
+        }
+
+        for (i = 0; i < n; i++)
+        {
+            dg[point][i]  = lastf[i]-ff[i];
+            dx[point][i] *= stepsize;
+        }
+
+        dgdg = 0;
+        dgdx = 0;
+        for (i = 0; i < n; i++)
+        {
+            dgdg += dg[point][i]*dg[point][i];
+            dgdx += dg[point][i]*dx[point][i];
+        }
+
+        diag = dgdx/dgdg;
+
+        rho[point] = 1.0/dgdx;
+        point++;
+
+        if (point >= nmaxcorr)
+        {
+            point = 0;
+        }
+
+        /* Update */
+        for (i = 0; i < n; i++)
+        {
+            p[i] = ff[i];
+        }
+
+        cp = point;
+
+        /* Recursive update. First go back over the memory points */
+        for (k = 0; k < ncorr; k++)
+        {
+            cp--;
+            if (cp < 0)
+            {
+                cp = ncorr-1;
+            }
+
+            sq = 0;
+            for (i = 0; i < n; i++)
+            {
+                sq += dx[cp][i]*p[i];
+            }
+
+            alpha[cp] = rho[cp]*sq;
+
+            for (i = 0; i < n; i++)
+            {
+                p[i] -= alpha[cp]*dg[cp][i];
+            }
+        }
+
+        for (i = 0; i < n; i++)
+        {
+            p[i] *= diag;
+        }
+
+        /* And then go forward again */
+        for (k = 0; k < ncorr; k++)
+        {
+            yr = 0;
+            for (i = 0; i < n; i++)
+            {
+                yr += p[i]*dg[cp][i];
+            }
+
+            beta = rho[cp]*yr;
+            beta = alpha[cp]-beta;
+
+            for (i = 0; i < n; i++)
+            {
+                p[i] += beta*dx[cp][i];
+            }
+
+            cp++;
+            if (cp >= ncorr)
+            {
+                cp = 0;
+            }
+        }
+
+        for (i = 0; i < n; i++)
+        {
+            if (!frozen[i])
+            {
+                dx[point][i] = p[i];
+            }
+            else
+            {
+                dx[point][i] = 0;
+            }
+        }
+
+        stepsize = 1.0;
+
+        /* Test whether the convergence criterion is met */
+        get_f_norm_max(cr, &(inputrec->opts), mdatoms, f, &fnorm, &fmax, &nfmax);
+
+        /* Print it if necessary */
+        if (MASTER(cr))
+        {
+            if (bVerbose)
+            {
+                fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
+                        step, Epot, fnorm/sqrt(state->natoms), fmax, nfmax+1);
+            }
+            /* Store the new (lower) energies */
+            upd_mdebin(mdebin, FALSE, FALSE, (double)step,
+                       mdatoms->tmass, enerd, state, inputrec->fepvals, inputrec->expandedvals, state->box,
+                       NULL, NULL, vir, pres, NULL, mu_tot, constr);
+            do_log = do_per_step(step, inputrec->nstlog);
+            do_ene = do_per_step(step, inputrec->nstenergy);
+            if (do_log)
+            {
+                print_ebin_header(fplog, step, step, state->lambda[efptFEP]);
+            }
+            print_ebin(outf->fp_ene, do_ene, FALSE, FALSE,
+                       do_log ? fplog : NULL, step, step, eprNORMAL,
+                       TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+        }
+
+        /* Stop when the maximum force lies below tolerance.
+         * If we have reached machine precision, converged is already set to true.
+         */
+
+        converged = converged || (fmax < inputrec->em_tol);
+
+    } /* End of the loop */
+
+    if (converged)
+    {
+        step--; /* we never took that last step in this case */
+
+    }
+    if (fmax > inputrec->em_tol)
+    {
+        if (MASTER(cr))
+        {
+            warn_step(stderr, inputrec->em_tol, step-1 == number_steps, FALSE);
+            warn_step(fplog, inputrec->em_tol, step-1 == number_steps, FALSE);
+        }
+        converged = FALSE;
+    }
+
+    /* If we printed energy and/or logfile last step (which was the last step)
+     * we don't have to do it again, but otherwise print the final values.
+     */
+    if (!do_log) /* Write final value to log since we didn't do anythin last step */
+    {
+        print_ebin_header(fplog, step, step, state->lambda[efptFEP]);
+    }
+    if (!do_ene || !do_log) /* Write final energy file entries */
+    {
+        print_ebin(outf->fp_ene, !do_ene, FALSE, FALSE,
+                   !do_log ? fplog : NULL, step, step, eprNORMAL,
+                   TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+    }
+
+    /* Print some stuff... */
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "\nwriting lowest energy coordinates.\n");
+    }
+
+    /* IMPORTANT!
+     * For accurate normal mode calculation it is imperative that we
+     * store the last conformation into the full precision binary trajectory.
+     *
+     * However, we should only do it if we did NOT already write this step
+     * above (which we did if do_x or do_f was true).
+     */
+    do_x = !do_per_step(step, inputrec->nstxout);
+    do_f = !do_per_step(step, inputrec->nstfout);
+    write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm),
+                  top_global, inputrec, step,
+                  &ems, state, f);
+
+    if (MASTER(cr))
+    {
+        print_converged(stderr, LBFGS, inputrec->em_tol, step, converged,
+                        number_steps, Epot, fmax, nfmax, fnorm/sqrt(state->natoms));
+        print_converged(fplog, LBFGS, inputrec->em_tol, step, converged,
+                        number_steps, Epot, fmax, nfmax, fnorm/sqrt(state->natoms));
+
+        fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
+    }
+
+    finish_em(fplog, cr, outf, runtime, wcycle);
+
+    /* To print the actual number of steps we needed somewhere */
+    runtime->nsteps_done = step;
+
+    return 0;
+} /* That's all folks */
+
+
+double do_steep(FILE *fplog, t_commrec *cr,
+                int nfile, const t_filenm fnm[],
+                const output_env_t oenv, gmx_bool bVerbose, gmx_bool bCompact,
+                int nstglobalcomm,
+                gmx_vsite_t *vsite, gmx_constr_t constr,
+                int stepout,
+                t_inputrec *inputrec,
+                gmx_mtop_t *top_global, t_fcdata *fcd,
+                t_state *state_global,
+                t_mdatoms *mdatoms,
+                t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+                gmx_edsam_t ed,
+                t_forcerec *fr,
+                int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
+                gmx_membed_t membed,
+                real cpt_period, real max_hours,
+                const char *deviceOptions,
+                unsigned long Flags,
+                gmx_runtime_t *runtime)
+{
+    const char       *SD = "Steepest Descents";
+    em_state_t       *s_min, *s_try;
+    rvec             *f_global;
+    gmx_localtop_t   *top;
+    gmx_enerdata_t   *enerd;
+    rvec             *f;
+    gmx_global_stat_t gstat;
+    t_graph          *graph;
+    real              stepsize, constepsize;
+    real              ustep, fnormn;
+    gmx_mdoutf_t     *outf;
+    t_mdebin         *mdebin;
+    gmx_bool          bDone, bAbort, do_x, do_f;
+    tensor            vir, pres;
+    rvec              mu_tot;
+    int               nsteps;
+    int               count          = 0;
+    int               steps_accepted = 0;
+    /* not used */
+    real              terminate = 0;
+
+    s_min = init_em_state();
+    s_try = init_em_state();
+
+    /* Init em and store the local state in s_try */
+    init_em(fplog, SD, cr, inputrec,
+            state_global, top_global, s_try, &top, &f, &f_global,
+            nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
+            nfile, fnm, &outf, &mdebin);
+
+    /* Print to log file  */
+    print_em_start(fplog, cr, runtime, wcycle, SD);
+
+    /* Set variables for stepsize (in nm). This is the largest
+     * step that we are going to make in any direction.
+     */
+    ustep    = inputrec->em_stepsize;
+    stepsize = 0;
+
+    /* Max number of steps  */
+    nsteps = inputrec->nsteps;
+
+    if (MASTER(cr))
+    {
+        /* Print to the screen  */
+        sp_header(stderr, SD, inputrec->em_tol, nsteps);
+    }
+    if (fplog)
+    {
+        sp_header(fplog, SD, inputrec->em_tol, nsteps);
+    }
+
+    /**** HERE STARTS THE LOOP ****
+     * count is the counter for the number of steps
+     * bDone will be TRUE when the minimization has converged
+     * bAbort will be TRUE when nsteps steps have been performed or when
+     * the stepsize becomes smaller than is reasonable for machine precision
+     */
+    count  = 0;
+    bDone  = FALSE;
+    bAbort = FALSE;
+    while (!bDone && !bAbort)
+    {
+        bAbort = (nsteps >= 0) && (count == nsteps);
+
+        /* set new coordinates, except for first step */
+        if (count > 0)
+        {
+            do_em_step(cr, inputrec, mdatoms, fr->bMolPBC,
+                       s_min, stepsize, s_min->f, s_try,
+                       constr, top, nrnb, wcycle, count);
+        }
+
+        evaluate_energy(fplog, bVerbose, cr,
+                        state_global, top_global, s_try, top,
+                        inputrec, nrnb, wcycle, gstat,
+                        vsite, constr, fcd, graph, mdatoms, fr,
+                        mu_tot, enerd, vir, pres, count, count == 0);
+
+        if (MASTER(cr))
+        {
+            print_ebin_header(fplog, count, count, s_try->s.lambda[efptFEP]);
+        }
+
+        if (count == 0)
+        {
+            s_min->epot = s_try->epot + 1;
+        }
+
+        /* Print it if necessary  */
+        if (MASTER(cr))
+        {
+            if (bVerbose)
+            {
+                fprintf(stderr, "Step=%5d, Dmax= %6.1e nm, Epot= %12.5e Fmax= %11.5e, atom= %d%c",
+                        count, ustep, s_try->epot, s_try->fmax, s_try->a_fmax+1,
+                        (s_try->epot < s_min->epot) ? '\n' : '\r');
+            }
+
+            if (s_try->epot < s_min->epot)
+            {
+                /* Store the new (lower) energies  */
+                upd_mdebin(mdebin, FALSE, FALSE, (double)count,
+                           mdatoms->tmass, enerd, &s_try->s, inputrec->fepvals, inputrec->expandedvals,
+                           s_try->s.box, NULL, NULL, vir, pres, NULL, mu_tot, constr);
+                print_ebin(outf->fp_ene, TRUE,
+                           do_per_step(steps_accepted, inputrec->nstdisreout),
+                           do_per_step(steps_accepted, inputrec->nstorireout),
+                           fplog, count, count, eprNORMAL, TRUE,
+                           mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+                fflush(fplog);
+            }
+        }
+
+        /* Now if the new energy is smaller than the previous...
+         * or if this is the first step!
+         * or if we did random steps!
+         */
+
+        if ( (count == 0) || (s_try->epot < s_min->epot) )
+        {
+            steps_accepted++;
+
+            /* Test whether the convergence criterion is met...  */
+            bDone = (s_try->fmax < inputrec->em_tol);
+
+            /* Copy the arrays for force, positions and energy  */
+            /* The 'Min' array always holds the coords and forces of the minimal
+               sampled energy  */
+            swap_em_state(s_min, s_try);
+            if (count > 0)
+            {
+                ustep *= 1.2;
+            }
+
+            /* Write to trn, if necessary */
+            do_x = do_per_step(steps_accepted, inputrec->nstxout);
+            do_f = do_per_step(steps_accepted, inputrec->nstfout);
+            write_em_traj(fplog, cr, outf, do_x, do_f, NULL,
+                          top_global, inputrec, count,
+                          s_min, state_global, f_global);
+        }
+        else
+        {
+            /* If energy is not smaller make the step smaller...  */
+            ustep *= 0.5;
+
+            if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
+            {
+                /* Reload the old state */
+                em_dd_partition_system(fplog, count, cr, top_global, inputrec,
+                                       s_min, top, mdatoms, fr, vsite, constr,
+                                       nrnb, wcycle);
+            }
+        }
+
+        /* Determine new step  */
+        stepsize = ustep/s_min->fmax;
+
+        /* Check if stepsize is too small, with 1 nm as a characteristic length */
+#ifdef GMX_DOUBLE
+        if (count == nsteps || ustep < 1e-12)
+#else
+        if (count == nsteps || ustep < 1e-6)
+#endif
+        {
+            if (MASTER(cr))
+            {
+                warn_step(stderr, inputrec->em_tol, count == nsteps, constr != NULL);
+                warn_step(fplog, inputrec->em_tol, count == nsteps, constr != NULL);
+            }
+            bAbort = TRUE;
+        }
+
+        count++;
+    } /* End of the loop  */
+
+    /* Print some shit...  */
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "\nwriting lowest energy coordinates.\n");
+    }
+    write_em_traj(fplog, cr, outf, TRUE, inputrec->nstfout, ftp2fn(efSTO, nfile, fnm),
+                  top_global, inputrec, count,
+                  s_min, state_global, f_global);
+
+    fnormn = s_min->fnorm/sqrt(state_global->natoms);
+
+    if (MASTER(cr))
+    {
+        print_converged(stderr, SD, inputrec->em_tol, count, bDone, nsteps,
+                        s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
+        print_converged(fplog, SD, inputrec->em_tol, count, bDone, nsteps,
+                        s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
+    }
+
+    finish_em(fplog, cr, outf, runtime, wcycle);
+
+    /* To print the actual number of steps we needed somewhere */
+    inputrec->nsteps = count;
+
+    runtime->nsteps_done = count;
+
+    return 0;
+} /* That's all folks */
+
+
+double do_nm(FILE *fplog, t_commrec *cr,
+             int nfile, const t_filenm fnm[],
+             const output_env_t oenv, gmx_bool bVerbose, gmx_bool bCompact,
+             int nstglobalcomm,
+             gmx_vsite_t *vsite, gmx_constr_t constr,
+             int stepout,
+             t_inputrec *inputrec,
+             gmx_mtop_t *top_global, t_fcdata *fcd,
+             t_state *state_global,
+             t_mdatoms *mdatoms,
+             t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+             gmx_edsam_t ed,
+             t_forcerec *fr,
+             int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
+             gmx_membed_t membed,
+             real cpt_period, real max_hours,
+             const char *deviceOptions,
+             unsigned long Flags,
+             gmx_runtime_t *runtime)
+{
+    const char          *NM = "Normal Mode Analysis";
+    gmx_mdoutf_t        *outf;
+    int                  natoms, atom, d;
+    int                  nnodes, node;
+    rvec                *f_global;
+    gmx_localtop_t      *top;
+    gmx_enerdata_t      *enerd;
+    rvec                *f;
+    gmx_global_stat_t    gstat;
+    t_graph             *graph;
+    real                 t, t0, lambda, lam0;
+    gmx_bool             bNS;
+    tensor               vir, pres;
+    rvec                 mu_tot;
+    rvec                *fneg, *dfdx;
+    gmx_bool             bSparse; /* use sparse matrix storage format */
+    size_t               sz=0;
+    gmx_sparsematrix_t * sparse_matrix           = NULL;
+    real           *     full_matrix             = NULL;
+    em_state_t       *   state_work;
+
+    /* added with respect to mdrun */
+    int        i, j, k, row, col;
+    real       der_range = 10.0*sqrt(GMX_REAL_EPS);
+    real       x_min;
+    real       fnorm, fmax;
+
+    if (constr != NULL)
+    {
+        gmx_fatal(FARGS, "Constraints present with Normal Mode Analysis, this combination is not supported");
+    }
+
+    state_work = init_em_state();
+
+    /* Init em and store the local state in state_minimum */
+    init_em(fplog, NM, cr, inputrec,
+            state_global, top_global, state_work, &top,
+            &f, &f_global,
+            nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
+            nfile, fnm, &outf, NULL);
+
+    natoms = top_global->natoms;
+    snew(fneg, natoms);
+    snew(dfdx, natoms);
+
+#ifndef GMX_DOUBLE
+    if (MASTER(cr))
+    {
+        fprintf(stderr,
+                "NOTE: This version of Gromacs has been compiled in single precision,\n"
+                "      which MIGHT not be accurate enough for normal mode analysis.\n"
+                "      Gromacs now uses sparse matrix storage, so the memory requirements\n"
+                "      are fairly modest even if you recompile in double precision.\n\n");
+    }
+#endif
+
+    /* Check if we can/should use sparse storage format.
+     *
+     * Sparse format is only useful when the Hessian itself is sparse, which it
+     * will be when we use a cutoff.
+     * For small systems (n<1000) it is easier to always use full matrix format, though.
+     */
+    if (EEL_FULL(fr->eeltype) || fr->rlist == 0.0)
+    {
+        md_print_info(cr, fplog, "Non-cutoff electrostatics used, forcing full Hessian format.\n");
+        bSparse = FALSE;
+    }
+    else if (top_global->natoms < 1000)
+    {
+        md_print_info(cr, fplog, "Small system size (N=%d), using full Hessian format.\n", top_global->natoms);
+        bSparse = FALSE;
+    }
+    else
+    {
+        md_print_info(cr, fplog, "Using compressed symmetric sparse Hessian format.\n");
+        bSparse = TRUE;
+    }
+
+    if (MASTER(cr))
+    {
+        sz = DIM*top_global->natoms;
+
+        fprintf(stderr, "Allocating Hessian memory...\n\n");
+
+        if (bSparse)
+        {
+            sparse_matrix = gmx_sparsematrix_init(sz);
+            sparse_matrix->compressed_symmetric = TRUE;
+        }
+        else
+        {
+            snew(full_matrix, sz*sz);
+        }
+    }
+
+    /* Initial values */
+    t0           = inputrec->init_t;
+    lam0         = inputrec->fepvals->init_lambda;
+    t            = t0;
+    lambda       = lam0;
+
+    init_nrnb(nrnb);
+
+    where();
+
+    /* Write start time and temperature */
+    print_em_start(fplog, cr, runtime, wcycle, NM);
+
+    /* fudge nr of steps to nr of atoms */
+    inputrec->nsteps = natoms*2;
+
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "starting normal mode calculation '%s'\n%d steps.\n\n",
+                *(top_global->name), (int)inputrec->nsteps);
+    }
+
+    nnodes = cr->nnodes;
+
+    /* Make evaluate_energy do a single node force calculation */
+    cr->nnodes = 1;
+    evaluate_energy(fplog, bVerbose, cr,
+                    state_global, top_global, state_work, top,
+                    inputrec, nrnb, wcycle, gstat,
+                    vsite, constr, fcd, graph, mdatoms, fr,
+                    mu_tot, enerd, vir, pres, -1, TRUE);
+    cr->nnodes = nnodes;
+
+    /* if forces are not small, warn user */
+    get_state_f_norm_max(cr, &(inputrec->opts), mdatoms, state_work);
+
+    md_print_info(cr, fplog, "Maximum force:%12.5e\n", state_work->fmax);
+    if (state_work->fmax > 1.0e-3)
+    {
+        md_print_info(cr, fplog,
+                      "The force is probably not small enough to "
+                      "ensure that you are at a minimum.\n"
+                      "Be aware that negative eigenvalues may occur\n"
+                      "when the resulting matrix is diagonalized.\n\n");
+    }
+
+    /***********************************************************
+     *
+     *      Loop over all pairs in matrix
+     *
+     *      do_force called twice. Once with positive and
+     *      once with negative displacement
+     *
+     ************************************************************/
+
+    /* Steps are divided one by one over the nodes */
+    for (atom = cr->nodeid; atom < natoms; atom += nnodes)
+    {
+
+        for (d = 0; d < DIM; d++)
+        {
+            x_min = state_work->s.x[atom][d];
+
+            state_work->s.x[atom][d] = x_min - der_range;
+
+            /* Make evaluate_energy do a single node force calculation */
+            cr->nnodes = 1;
+            evaluate_energy(fplog, bVerbose, cr,
+                            state_global, top_global, state_work, top,
+                            inputrec, nrnb, wcycle, gstat,
+                            vsite, constr, fcd, graph, mdatoms, fr,
+                            mu_tot, enerd, vir, pres, atom*2, FALSE);
+
+            for (i = 0; i < natoms; i++)
+            {
+                copy_rvec(state_work->f[i], fneg[i]);
+            }
+
+            state_work->s.x[atom][d] = x_min + der_range;
+
+            evaluate_energy(fplog, bVerbose, cr,
+                            state_global, top_global, state_work, top,
+                            inputrec, nrnb, wcycle, gstat,
+                            vsite, constr, fcd, graph, mdatoms, fr,
+                            mu_tot, enerd, vir, pres, atom*2+1, FALSE);
+            cr->nnodes = nnodes;
+
+            /* x is restored to original */
+            state_work->s.x[atom][d] = x_min;
+
+            for (j = 0; j < natoms; j++)
+            {
+                for (k = 0; (k < DIM); k++)
+                {
+                    dfdx[j][k] =
+                        -(state_work->f[j][k] - fneg[j][k])/(2*der_range);
+                }
+            }
+
+            if (!MASTER(cr))
+            {
+#ifdef GMX_MPI
+#ifdef GMX_DOUBLE
+#define mpi_type MPI_DOUBLE
+#else
+#define mpi_type MPI_FLOAT
+#endif
+                MPI_Send(dfdx[0], natoms*DIM, mpi_type, MASTERNODE(cr), cr->nodeid,
+                         cr->mpi_comm_mygroup);
+#endif
+            }
+            else
+            {
+                for (node = 0; (node < nnodes && atom+node < natoms); node++)
+                {
+                    if (node > 0)
+                    {
+#ifdef GMX_MPI
+                        MPI_Status stat;
+                        MPI_Recv(dfdx[0], natoms*DIM, mpi_type, node, node,
+                                 cr->mpi_comm_mygroup, &stat);
+#undef mpi_type
+#endif
+                    }
+
+                    row = (atom + node)*DIM + d;
+
+                    for (j = 0; j < natoms; j++)
+                    {
+                        for (k = 0; k < DIM; k++)
+                        {
+                            col = j*DIM + k;
+
+                            if (bSparse)
+                            {
+                                if (col >= row && dfdx[j][k] != 0.0)
+                                {
+                                    gmx_sparsematrix_increment_value(sparse_matrix,
+                                                                     row, col, dfdx[j][k]);
+                                }
+                            }
+                            else
+                            {
+                                full_matrix[row*sz+col] = dfdx[j][k];
+                            }
+                        }
+                    }
+                }
+            }
+
+            if (bVerbose && fplog)
+            {
+                fflush(fplog);
+            }
+        }
+        /* write progress */
+        if (MASTER(cr) && bVerbose)
+        {
+            fprintf(stderr, "\rFinished step %d out of %d",
+                    min(atom+nnodes, natoms), natoms);
+            fflush(stderr);
+        }
+    }
+
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "\n\nWriting Hessian...\n");
+        gmx_mtxio_write(ftp2fn(efMTX, nfile, fnm), sz, sz, full_matrix, sparse_matrix);
+    }
+
+    finish_em(fplog, cr, outf, runtime, wcycle);
+
+    runtime->nsteps_done = natoms*2;
+
+    return 0;
+}
diff --git a/patches/gromacs-4.6.5.diff/src/mdlib/minimize.c.preplumed b/patches/gromacs-4.6.5.diff/src/mdlib/minimize.c.preplumed
new file mode 100644
index 0000000000000000000000000000000000000000..5df3936cfbef96b8583e01a95ddd9e0b27c8efb0
--- /dev/null
+++ b/patches/gromacs-4.6.5.diff/src/mdlib/minimize.c.preplumed
@@ -0,0 +1,2867 @@
+/*
+ * This file is part of the GROMACS molecular simulation package.
+ *
+ * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
+ * Copyright (c) 2001-2004, The GROMACS development team,
+ * check out http://www.gromacs.org for more information.
+ * Copyright (c) 2012,2013, by the GROMACS development team, led by
+ * David van der Spoel, Berk Hess, Erik Lindahl, and including many
+ * others, as listed in the AUTHORS file in the top-level source
+ * directory and at http://www.gromacs.org.
+ *
+ * GROMACS is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public License
+ * as published by the Free Software Foundation; either version 2.1
+ * of the License, or (at your option) any later version.
+ *
+ * GROMACS is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with GROMACS; if not, see
+ * http://www.gnu.org/licenses, or write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
+ *
+ * If you want to redistribute modifications to GROMACS, please
+ * consider that scientific software is very special. Version
+ * control is crucial - bugs must be traceable. We will be happy to
+ * consider code for inclusion in the official distribution, but
+ * derived work must not be called official GROMACS. Details are found
+ * in the README & COPYING files - if they are missing, get the
+ * official version at http://www.gromacs.org.
+ *
+ * To help us fund GROMACS development, we humbly ask that you cite
+ * the research papers on the package. Check out http://www.gromacs.org.
+ */
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include <string.h>
+#include <time.h>
+#include <math.h>
+#include "sysstuff.h"
+#include "string2.h"
+#include "network.h"
+#include "confio.h"
+#include "copyrite.h"
+#include "smalloc.h"
+#include "nrnb.h"
+#include "main.h"
+#include "force.h"
+#include "macros.h"
+#include "random.h"
+#include "names.h"
+#include "gmx_fatal.h"
+#include "txtdump.h"
+#include "typedefs.h"
+#include "update.h"
+#include "constr.h"
+#include "vec.h"
+#include "statutil.h"
+#include "tgroup.h"
+#include "mdebin.h"
+#include "vsite.h"
+#include "force.h"
+#include "mdrun.h"
+#include "md_support.h"
+#include "domdec.h"
+#include "partdec.h"
+#include "trnio.h"
+#include "sparsematrix.h"
+#include "mtxio.h"
+#include "mdatoms.h"
+#include "ns.h"
+#include "gmx_wallcycle.h"
+#include "mtop_util.h"
+#include "gmxfio.h"
+#include "pme.h"
+#include "bondf.h"
+#include "gmx_omp_nthreads.h"
+#include "md_logging.h"
+
+
+typedef struct {
+    t_state  s;
+    rvec    *f;
+    real     epot;
+    real     fnorm;
+    real     fmax;
+    int      a_fmax;
+} em_state_t;
+
+static em_state_t *init_em_state()
+{
+    em_state_t *ems;
+
+    snew(ems, 1);
+
+    /* does this need to be here?  Should the array be declared differently (staticaly)in the state definition? */
+    snew(ems->s.lambda, efptNR);
+
+    return ems;
+}
+
+static void print_em_start(FILE *fplog, t_commrec *cr, gmx_runtime_t *runtime,
+                           gmx_wallcycle_t wcycle,
+                           const char *name)
+{
+    char buf[STRLEN];
+
+    runtime_start(runtime);
+
+    sprintf(buf, "Started %s", name);
+    print_date_and_time(fplog, cr->nodeid, buf, NULL);
+
+    wallcycle_start(wcycle, ewcRUN);
+}
+static void em_time_end(FILE *fplog, t_commrec *cr, gmx_runtime_t *runtime,
+                        gmx_wallcycle_t wcycle)
+{
+    wallcycle_stop(wcycle, ewcRUN);
+
+    runtime_end(runtime);
+}
+
+static void sp_header(FILE *out, const char *minimizer, real ftol, int nsteps)
+{
+    fprintf(out, "\n");
+    fprintf(out, "%s:\n", minimizer);
+    fprintf(out, "   Tolerance (Fmax)   = %12.5e\n", ftol);
+    fprintf(out, "   Number of steps    = %12d\n", nsteps);
+}
+
+static void warn_step(FILE *fp, real ftol, gmx_bool bLastStep, gmx_bool bConstrain)
+{
+    char buffer[2048];
+    if (bLastStep)
+    {
+        sprintf(buffer,
+                "\nEnergy minimization reached the maximum number "
+                "of steps before the forces reached the requested "
+                "precision Fmax < %g.\n", ftol);
+    }
+    else
+    {
+        sprintf(buffer,
+                "\nEnergy minimization has stopped, but the forces have "
+                "not converged to the requested precision Fmax < %g (which "
+                "may not be possible for your system). It stopped "
+                "because the algorithm tried to make a new step whose size "
+                "was too small, or there was no change in the energy since "
+                "last step. Either way, we regard the minimization as "
+                "converged to within the available machine precision, "
+                "given your starting configuration and EM parameters.\n%s%s",
+                ftol,
+                sizeof(real) < sizeof(double) ?
+                "\nDouble precision normally gives you higher accuracy, but "
+                "this is often not needed for preparing to run molecular "
+                "dynamics.\n" :
+                "",
+                bConstrain ?
+                "You might need to increase your constraint accuracy, or turn\n"
+                "off constraints altogether (set constraints = none in mdp file)\n" :
+                "");
+    }
+    fputs(wrap_lines(buffer, 78, 0, FALSE), fp);
+}
+
+
+
+static void print_converged(FILE *fp, const char *alg, real ftol,
+                            gmx_large_int_t count, gmx_bool bDone, gmx_large_int_t nsteps,
+                            real epot, real fmax, int nfmax, real fnorm)
+{
+    char buf[STEPSTRSIZE];
+
+    if (bDone)
+    {
+        fprintf(fp, "\n%s converged to Fmax < %g in %s steps\n",
+                alg, ftol, gmx_step_str(count, buf));
+    }
+    else if (count < nsteps)
+    {
+        fprintf(fp, "\n%s converged to machine precision in %s steps,\n"
+                "but did not reach the requested Fmax < %g.\n",
+                alg, gmx_step_str(count, buf), ftol);
+    }
+    else
+    {
+        fprintf(fp, "\n%s did not converge to Fmax < %g in %s steps.\n",
+                alg, ftol, gmx_step_str(count, buf));
+    }
+
+#ifdef GMX_DOUBLE
+    fprintf(fp, "Potential Energy  = %21.14e\n", epot);
+    fprintf(fp, "Maximum force     = %21.14e on atom %d\n", fmax, nfmax+1);
+    fprintf(fp, "Norm of force     = %21.14e\n", fnorm);
+#else
+    fprintf(fp, "Potential Energy  = %14.7e\n", epot);
+    fprintf(fp, "Maximum force     = %14.7e on atom %d\n", fmax, nfmax+1);
+    fprintf(fp, "Norm of force     = %14.7e\n", fnorm);
+#endif
+}
+
+static void get_f_norm_max(t_commrec *cr,
+                           t_grpopts *opts, t_mdatoms *mdatoms, rvec *f,
+                           real *fnorm, real *fmax, int *a_fmax)
+{
+    double fnorm2, *sum;
+    real   fmax2, fmax2_0, fam;
+    int    la_max, a_max, start, end, i, m, gf;
+
+    /* This routine finds the largest force and returns it.
+     * On parallel machines the global max is taken.
+     */
+    fnorm2 = 0;
+    fmax2  = 0;
+    la_max = -1;
+    gf     = 0;
+    start  = mdatoms->start;
+    end    = mdatoms->homenr + start;
+    if (mdatoms->cFREEZE)
+    {
+        for (i = start; i < end; i++)
+        {
+            gf  = mdatoms->cFREEZE[i];
+            fam = 0;
+            for (m = 0; m < DIM; m++)
+            {
+                if (!opts->nFreeze[gf][m])
+                {
+                    fam += sqr(f[i][m]);
+                }
+            }
+            fnorm2 += fam;
+            if (fam > fmax2)
+            {
+                fmax2  = fam;
+                la_max = i;
+            }
+        }
+    }
+    else
+    {
+        for (i = start; i < end; i++)
+        {
+            fam     = norm2(f[i]);
+            fnorm2 += fam;
+            if (fam > fmax2)
+            {
+                fmax2  = fam;
+                la_max = i;
+            }
+        }
+    }
+
+    if (la_max >= 0 && DOMAINDECOMP(cr))
+    {
+        a_max = cr->dd->gatindex[la_max];
+    }
+    else
+    {
+        a_max = la_max;
+    }
+    if (PAR(cr))
+    {
+        snew(sum, 2*cr->nnodes+1);
+        sum[2*cr->nodeid]   = fmax2;
+        sum[2*cr->nodeid+1] = a_max;
+        sum[2*cr->nnodes]   = fnorm2;
+        gmx_sumd(2*cr->nnodes+1, sum, cr);
+        fnorm2 = sum[2*cr->nnodes];
+        /* Determine the global maximum */
+        for (i = 0; i < cr->nnodes; i++)
+        {
+            if (sum[2*i] > fmax2)
+            {
+                fmax2 = sum[2*i];
+                a_max = (int)(sum[2*i+1] + 0.5);
+            }
+        }
+        sfree(sum);
+    }
+
+    if (fnorm)
+    {
+        *fnorm = sqrt(fnorm2);
+    }
+    if (fmax)
+    {
+        *fmax  = sqrt(fmax2);
+    }
+    if (a_fmax)
+    {
+        *a_fmax = a_max;
+    }
+}
+
+static void get_state_f_norm_max(t_commrec *cr,
+                                 t_grpopts *opts, t_mdatoms *mdatoms,
+                                 em_state_t *ems)
+{
+    get_f_norm_max(cr, opts, mdatoms, ems->f, &ems->fnorm, &ems->fmax, &ems->a_fmax);
+}
+
+void init_em(FILE *fplog, const char *title,
+             t_commrec *cr, t_inputrec *ir,
+             t_state *state_global, gmx_mtop_t *top_global,
+             em_state_t *ems, gmx_localtop_t **top,
+             rvec **f, rvec **f_global,
+             t_nrnb *nrnb, rvec mu_tot,
+             t_forcerec *fr, gmx_enerdata_t **enerd,
+             t_graph **graph, t_mdatoms *mdatoms, gmx_global_stat_t *gstat,
+             gmx_vsite_t *vsite, gmx_constr_t constr,
+             int nfile, const t_filenm fnm[],
+             gmx_mdoutf_t **outf, t_mdebin **mdebin)
+{
+    int  start, homenr, i;
+    real dvdl_constr;
+
+    if (fplog)
+    {
+        fprintf(fplog, "Initiating %s\n", title);
+    }
+
+    state_global->ngtc = 0;
+
+    /* Initialize lambda variables */
+    initialize_lambdas(fplog, ir, &(state_global->fep_state), state_global->lambda, NULL);
+
+    init_nrnb(nrnb);
+
+    if (DOMAINDECOMP(cr))
+    {
+        *top = dd_init_local_top(top_global);
+
+        dd_init_local_state(cr->dd, state_global, &ems->s);
+
+        *f = NULL;
+
+        /* Distribute the charge groups over the nodes from the master node */
+        dd_partition_system(fplog, ir->init_step, cr, TRUE, 1,
+                            state_global, top_global, ir,
+                            &ems->s, &ems->f, mdatoms, *top,
+                            fr, vsite, NULL, constr,
+                            nrnb, NULL, FALSE);
+        dd_store_state(cr->dd, &ems->s);
+
+        if (ir->nstfout)
+        {
+            snew(*f_global, top_global->natoms);
+        }
+        else
+        {
+            *f_global = NULL;
+        }
+        *graph = NULL;
+    }
+    else
+    {
+        snew(*f, top_global->natoms);
+
+        /* Just copy the state */
+        ems->s = *state_global;
+        snew(ems->s.x, ems->s.nalloc);
+        snew(ems->f, ems->s.nalloc);
+        for (i = 0; i < state_global->natoms; i++)
+        {
+            copy_rvec(state_global->x[i], ems->s.x[i]);
+        }
+        copy_mat(state_global->box, ems->s.box);
+
+        if (PAR(cr) && ir->eI != eiNM)
+        {
+            /* Initialize the particle decomposition and split the topology */
+            *top = split_system(fplog, top_global, ir, cr);
+
+            pd_cg_range(cr, &fr->cg0, &fr->hcg);
+        }
+        else
+        {
+            *top = gmx_mtop_generate_local_top(top_global, ir);
+        }
+        *f_global = *f;
+
+        forcerec_set_excl_load(fr, *top, cr);
+
+        setup_bonded_threading(fr, &(*top)->idef);
+
+        if (ir->ePBC != epbcNONE && !fr->bMolPBC)
+        {
+            *graph = mk_graph(fplog, &((*top)->idef), 0, top_global->natoms, FALSE, FALSE);
+        }
+        else
+        {
+            *graph = NULL;
+        }
+
+        if (PARTDECOMP(cr))
+        {
+            pd_at_range(cr, &start, &homenr);
+            homenr -= start;
+        }
+        else
+        {
+            start  = 0;
+            homenr = top_global->natoms;
+        }
+        atoms2md(top_global, ir, 0, NULL, start, homenr, mdatoms);
+        update_mdatoms(mdatoms, state_global->lambda[efptFEP]);
+
+        if (vsite)
+        {
+            set_vsite_top(vsite, *top, mdatoms, cr);
+        }
+    }
+
+    if (constr)
+    {
+        if (ir->eConstrAlg == econtSHAKE &&
+            gmx_mtop_ftype_count(top_global, F_CONSTR) > 0)
+        {
+            gmx_fatal(FARGS, "Can not do energy minimization with %s, use %s\n",
+                      econstr_names[econtSHAKE], econstr_names[econtLINCS]);
+        }
+
+        if (!DOMAINDECOMP(cr))
+        {
+            set_constraints(constr, *top, ir, mdatoms, cr);
+        }
+
+        if (!ir->bContinuation)
+        {
+            /* Constrain the starting coordinates */
+            dvdl_constr = 0;
+            constrain(PAR(cr) ? NULL : fplog, TRUE, TRUE, constr, &(*top)->idef,
+                      ir, NULL, cr, -1, 0, mdatoms,
+                      ems->s.x, ems->s.x, NULL, fr->bMolPBC, ems->s.box,
+                      ems->s.lambda[efptFEP], &dvdl_constr,
+                      NULL, NULL, nrnb, econqCoord, FALSE, 0, 0);
+        }
+    }
+
+    if (PAR(cr))
+    {
+        *gstat = global_stat_init(ir);
+    }
+
+    *outf = init_mdoutf(nfile, fnm, 0, cr, ir, NULL);
+
+    snew(*enerd, 1);
+    init_enerdata(top_global->groups.grps[egcENER].nr, ir->fepvals->n_lambda,
+                  *enerd);
+
+    if (mdebin != NULL)
+    {
+        /* Init bin for energy stuff */
+        *mdebin = init_mdebin((*outf)->fp_ene, top_global, ir, NULL);
+    }
+
+    clear_rvec(mu_tot);
+    calc_shifts(ems->s.box, fr->shift_vec);
+}
+
+static void finish_em(FILE *fplog, t_commrec *cr, gmx_mdoutf_t *outf,
+                      gmx_runtime_t *runtime, gmx_wallcycle_t wcycle)
+{
+    if (!(cr->duty & DUTY_PME))
+    {
+        /* Tell the PME only node to finish */
+        gmx_pme_send_finish(cr);
+    }
+
+    done_mdoutf(outf);
+
+    em_time_end(fplog, cr, runtime, wcycle);
+}
+
+static void swap_em_state(em_state_t *ems1, em_state_t *ems2)
+{
+    em_state_t tmp;
+
+    tmp   = *ems1;
+    *ems1 = *ems2;
+    *ems2 = tmp;
+}
+
+static void copy_em_coords(em_state_t *ems, t_state *state)
+{
+    int i;
+
+    for (i = 0; (i < state->natoms); i++)
+    {
+        copy_rvec(ems->s.x[i], state->x[i]);
+    }
+}
+
+static void write_em_traj(FILE *fplog, t_commrec *cr,
+                          gmx_mdoutf_t *outf,
+                          gmx_bool bX, gmx_bool bF, const char *confout,
+                          gmx_mtop_t *top_global,
+                          t_inputrec *ir, gmx_large_int_t step,
+                          em_state_t *state,
+                          t_state *state_global, rvec *f_global)
+{
+    int mdof_flags;
+
+    if ((bX || bF || confout != NULL) && !DOMAINDECOMP(cr))
+    {
+        copy_em_coords(state, state_global);
+        f_global = state->f;
+    }
+
+    mdof_flags = 0;
+    if (bX)
+    {
+        mdof_flags |= MDOF_X;
+    }
+    if (bF)
+    {
+        mdof_flags |= MDOF_F;
+    }
+    write_traj(fplog, cr, outf, mdof_flags,
+               top_global, step, (double)step,
+               &state->s, state_global, state->f, f_global, NULL, NULL);
+
+    if (confout != NULL && MASTER(cr))
+    {
+        if (ir->ePBC != epbcNONE && !ir->bPeriodicMols && DOMAINDECOMP(cr))
+        {
+            /* Make molecules whole only for confout writing */
+            do_pbc_mtop(fplog, ir->ePBC, state_global->box, top_global,
+                        state_global->x);
+        }
+
+        write_sto_conf_mtop(confout,
+                            *top_global->name, top_global,
+                            state_global->x, NULL, ir->ePBC, state_global->box);
+    }
+}
+
+static void do_em_step(t_commrec *cr, t_inputrec *ir, t_mdatoms *md,
+                       gmx_bool bMolPBC,
+                       em_state_t *ems1, real a, rvec *f, em_state_t *ems2,
+                       gmx_constr_t constr, gmx_localtop_t *top,
+                       t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+                       gmx_large_int_t count)
+
+{
+    t_state *s1, *s2;
+    int      i;
+    int      start, end;
+    rvec    *x1, *x2;
+    real     dvdl_constr;
+
+    s1 = &ems1->s;
+    s2 = &ems2->s;
+
+    if (DOMAINDECOMP(cr) && s1->ddp_count != cr->dd->ddp_count)
+    {
+        gmx_incons("state mismatch in do_em_step");
+    }
+
+    s2->flags = s1->flags;
+
+    if (s2->nalloc != s1->nalloc)
+    {
+        s2->nalloc = s1->nalloc;
+        srenew(s2->x, s1->nalloc);
+        srenew(ems2->f,  s1->nalloc);
+        if (s2->flags & (1<<estCGP))
+        {
+            srenew(s2->cg_p,  s1->nalloc);
+        }
+    }
+
+    s2->natoms = s1->natoms;
+    copy_mat(s1->box, s2->box);
+    /* Copy free energy state */
+    for (i = 0; i < efptNR; i++)
+    {
+        s2->lambda[i] = s1->lambda[i];
+    }
+    copy_mat(s1->box, s2->box);
+
+    start = md->start;
+    end   = md->start + md->homenr;
+
+    x1 = s1->x;
+    x2 = s2->x;
+
+#pragma omp parallel num_threads(gmx_omp_nthreads_get(emntUpdate))
+    {
+        int gf, i, m;
+
+        gf = 0;
+#pragma omp for schedule(static) nowait
+        for (i = start; i < end; i++)
+        {
+            if (md->cFREEZE)
+            {
+                gf = md->cFREEZE[i];
+            }
+            for (m = 0; m < DIM; m++)
+            {
+                if (ir->opts.nFreeze[gf][m])
+                {
+                    x2[i][m] = x1[i][m];
+                }
+                else
+                {
+                    x2[i][m] = x1[i][m] + a*f[i][m];
+                }
+            }
+        }
+
+        if (s2->flags & (1<<estCGP))
+        {
+            /* Copy the CG p vector */
+            x1 = s1->cg_p;
+            x2 = s2->cg_p;
+#pragma omp for schedule(static) nowait
+            for (i = start; i < end; i++)
+            {
+                copy_rvec(x1[i], x2[i]);
+            }
+        }
+
+        if (DOMAINDECOMP(cr))
+        {
+            s2->ddp_count = s1->ddp_count;
+            if (s2->cg_gl_nalloc < s1->cg_gl_nalloc)
+            {
+#pragma omp barrier
+                s2->cg_gl_nalloc = s1->cg_gl_nalloc;
+                srenew(s2->cg_gl, s2->cg_gl_nalloc);
+#pragma omp barrier
+            }
+            s2->ncg_gl = s1->ncg_gl;
+#pragma omp for schedule(static) nowait
+            for (i = 0; i < s2->ncg_gl; i++)
+            {
+                s2->cg_gl[i] = s1->cg_gl[i];
+            }
+            s2->ddp_count_cg_gl = s1->ddp_count_cg_gl;
+        }
+    }
+
+    if (constr)
+    {
+        wallcycle_start(wcycle, ewcCONSTR);
+        dvdl_constr = 0;
+        constrain(NULL, TRUE, TRUE, constr, &top->idef,
+                  ir, NULL, cr, count, 0, md,
+                  s1->x, s2->x, NULL, bMolPBC, s2->box,
+                  s2->lambda[efptBONDED], &dvdl_constr,
+                  NULL, NULL, nrnb, econqCoord, FALSE, 0, 0);
+        wallcycle_stop(wcycle, ewcCONSTR);
+    }
+}
+
+static void em_dd_partition_system(FILE *fplog, int step, t_commrec *cr,
+                                   gmx_mtop_t *top_global, t_inputrec *ir,
+                                   em_state_t *ems, gmx_localtop_t *top,
+                                   t_mdatoms *mdatoms, t_forcerec *fr,
+                                   gmx_vsite_t *vsite, gmx_constr_t constr,
+                                   t_nrnb *nrnb, gmx_wallcycle_t wcycle)
+{
+    /* Repartition the domain decomposition */
+    wallcycle_start(wcycle, ewcDOMDEC);
+    dd_partition_system(fplog, step, cr, FALSE, 1,
+                        NULL, top_global, ir,
+                        &ems->s, &ems->f,
+                        mdatoms, top, fr, vsite, NULL, constr,
+                        nrnb, wcycle, FALSE);
+    dd_store_state(cr->dd, &ems->s);
+    wallcycle_stop(wcycle, ewcDOMDEC);
+}
+
+static void evaluate_energy(FILE *fplog, gmx_bool bVerbose, t_commrec *cr,
+                            t_state *state_global, gmx_mtop_t *top_global,
+                            em_state_t *ems, gmx_localtop_t *top,
+                            t_inputrec *inputrec,
+                            t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+                            gmx_global_stat_t gstat,
+                            gmx_vsite_t *vsite, gmx_constr_t constr,
+                            t_fcdata *fcd,
+                            t_graph *graph, t_mdatoms *mdatoms,
+                            t_forcerec *fr, rvec mu_tot,
+                            gmx_enerdata_t *enerd, tensor vir, tensor pres,
+                            gmx_large_int_t count, gmx_bool bFirst)
+{
+    real     t;
+    gmx_bool bNS;
+    int      nabnsb;
+    tensor   force_vir, shake_vir, ekin;
+    real     dvdl_constr, prescorr, enercorr, dvdlcorr;
+    real     terminate = 0;
+
+    /* Set the time to the initial time, the time does not change during EM */
+    t = inputrec->init_t;
+
+    if (bFirst ||
+        (DOMAINDECOMP(cr) && ems->s.ddp_count < cr->dd->ddp_count))
+    {
+        /* This the first state or an old state used before the last ns */
+        bNS = TRUE;
+    }
+    else
+    {
+        bNS = FALSE;
+        if (inputrec->nstlist > 0)
+        {
+            bNS = TRUE;
+        }
+        else if (inputrec->nstlist == -1)
+        {
+            nabnsb = natoms_beyond_ns_buffer(inputrec, fr, &top->cgs, NULL, ems->s.x);
+            if (PAR(cr))
+            {
+                gmx_sumi(1, &nabnsb, cr);
+            }
+            bNS = (nabnsb > 0);
+        }
+    }
+
+    if (vsite)
+    {
+        construct_vsites(fplog, vsite, ems->s.x, nrnb, 1, NULL,
+                         top->idef.iparams, top->idef.il,
+                         fr->ePBC, fr->bMolPBC, graph, cr, ems->s.box);
+    }
+
+    if (DOMAINDECOMP(cr))
+    {
+        if (bNS)
+        {
+            /* Repartition the domain decomposition */
+            em_dd_partition_system(fplog, count, cr, top_global, inputrec,
+                                   ems, top, mdatoms, fr, vsite, constr,
+                                   nrnb, wcycle);
+        }
+    }
+
+    /* Calc force & energy on new trial position  */
+    /* do_force always puts the charge groups in the box and shifts again
+     * We do not unshift, so molecules are always whole in congrad.c
+     */
+    do_force(fplog, cr, inputrec,
+             count, nrnb, wcycle, top, top_global, &top_global->groups,
+             ems->s.box, ems->s.x, &ems->s.hist,
+             ems->f, force_vir, mdatoms, enerd, fcd,
+             ems->s.lambda, graph, fr, vsite, mu_tot, t, NULL, NULL, TRUE,
+             GMX_FORCE_STATECHANGED | GMX_FORCE_ALLFORCES |
+             GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY |
+             (bNS ? GMX_FORCE_NS | GMX_FORCE_DO_LR : 0));
+
+    /* Clear the unused shake virial and pressure */
+    clear_mat(shake_vir);
+    clear_mat(pres);
+
+    /* Communicate stuff when parallel */
+    if (PAR(cr) && inputrec->eI != eiNM)
+    {
+        wallcycle_start(wcycle, ewcMoveE);
+
+        global_stat(fplog, gstat, cr, enerd, force_vir, shake_vir, mu_tot,
+                    inputrec, NULL, NULL, NULL, 1, &terminate,
+                    top_global, &ems->s, FALSE,
+                    CGLO_ENERGY |
+                    CGLO_PRESSURE |
+                    CGLO_CONSTRAINT |
+                    CGLO_FIRSTITERATE);
+
+        wallcycle_stop(wcycle, ewcMoveE);
+    }
+
+    /* Calculate long range corrections to pressure and energy */
+    calc_dispcorr(fplog, inputrec, fr, count, top_global->natoms, ems->s.box, ems->s.lambda[efptVDW],
+                  pres, force_vir, &prescorr, &enercorr, &dvdlcorr);
+    enerd->term[F_DISPCORR] = enercorr;
+    enerd->term[F_EPOT]    += enercorr;
+    enerd->term[F_PRES]    += prescorr;
+    enerd->term[F_DVDL]    += dvdlcorr;
+
+    ems->epot = enerd->term[F_EPOT];
+
+    if (constr)
+    {
+        /* Project out the constraint components of the force */
+        wallcycle_start(wcycle, ewcCONSTR);
+        dvdl_constr = 0;
+        constrain(NULL, FALSE, FALSE, constr, &top->idef,
+                  inputrec, NULL, cr, count, 0, mdatoms,
+                  ems->s.x, ems->f, ems->f, fr->bMolPBC, ems->s.box,
+                  ems->s.lambda[efptBONDED], &dvdl_constr,
+                  NULL, &shake_vir, nrnb, econqForceDispl, FALSE, 0, 0);
+        if (fr->bSepDVDL && fplog)
+        {
+            fprintf(fplog, sepdvdlformat, "Constraints", t, dvdl_constr);
+        }
+        enerd->term[F_DVDL_CONSTR] += dvdl_constr;
+        m_add(force_vir, shake_vir, vir);
+        wallcycle_stop(wcycle, ewcCONSTR);
+    }
+    else
+    {
+        copy_mat(force_vir, vir);
+    }
+
+    clear_mat(ekin);
+    enerd->term[F_PRES] =
+        calc_pres(fr->ePBC, inputrec->nwall, ems->s.box, ekin, vir, pres);
+
+    sum_dhdl(enerd, ems->s.lambda, inputrec->fepvals);
+
+    if (EI_ENERGY_MINIMIZATION(inputrec->eI))
+    {
+        get_state_f_norm_max(cr, &(inputrec->opts), mdatoms, ems);
+    }
+}
+
+static double reorder_partsum(t_commrec *cr, t_grpopts *opts, t_mdatoms *mdatoms,
+                              gmx_mtop_t *mtop,
+                              em_state_t *s_min, em_state_t *s_b)
+{
+    rvec          *fm, *fb, *fmg;
+    t_block       *cgs_gl;
+    int            ncg, *cg_gl, *index, c, cg, i, a0, a1, a, gf, m;
+    double         partsum;
+    unsigned char *grpnrFREEZE;
+
+    if (debug)
+    {
+        fprintf(debug, "Doing reorder_partsum\n");
+    }
+
+    fm = s_min->f;
+    fb = s_b->f;
+
+    cgs_gl = dd_charge_groups_global(cr->dd);
+    index  = cgs_gl->index;
+
+    /* Collect fm in a global vector fmg.
+     * This conflicts with the spirit of domain decomposition,
+     * but to fully optimize this a much more complicated algorithm is required.
+     */
+    snew(fmg, mtop->natoms);
+
+    ncg   = s_min->s.ncg_gl;
+    cg_gl = s_min->s.cg_gl;
+    i     = 0;
+    for (c = 0; c < ncg; c++)
+    {
+        cg = cg_gl[c];
+        a0 = index[cg];
+        a1 = index[cg+1];
+        for (a = a0; a < a1; a++)
+        {
+            copy_rvec(fm[i], fmg[a]);
+            i++;
+        }
+    }
+    gmx_sum(mtop->natoms*3, fmg[0], cr);
+
+    /* Now we will determine the part of the sum for the cgs in state s_b */
+    ncg         = s_b->s.ncg_gl;
+    cg_gl       = s_b->s.cg_gl;
+    partsum     = 0;
+    i           = 0;
+    gf          = 0;
+    grpnrFREEZE = mtop->groups.grpnr[egcFREEZE];
+    for (c = 0; c < ncg; c++)
+    {
+        cg = cg_gl[c];
+        a0 = index[cg];
+        a1 = index[cg+1];
+        for (a = a0; a < a1; a++)
+        {
+            if (mdatoms->cFREEZE && grpnrFREEZE)
+            {
+                gf = grpnrFREEZE[i];
+            }
+            for (m = 0; m < DIM; m++)
+            {
+                if (!opts->nFreeze[gf][m])
+                {
+                    partsum += (fb[i][m] - fmg[a][m])*fb[i][m];
+                }
+            }
+            i++;
+        }
+    }
+
+    sfree(fmg);
+
+    return partsum;
+}
+
+static real pr_beta(t_commrec *cr, t_grpopts *opts, t_mdatoms *mdatoms,
+                    gmx_mtop_t *mtop,
+                    em_state_t *s_min, em_state_t *s_b)
+{
+    rvec  *fm, *fb;
+    double sum;
+    int    gf, i, m;
+
+    /* This is just the classical Polak-Ribiere calculation of beta;
+     * it looks a bit complicated since we take freeze groups into account,
+     * and might have to sum it in parallel runs.
+     */
+
+    if (!DOMAINDECOMP(cr) ||
+        (s_min->s.ddp_count == cr->dd->ddp_count &&
+         s_b->s.ddp_count   == cr->dd->ddp_count))
+    {
+        fm  = s_min->f;
+        fb  = s_b->f;
+        sum = 0;
+        gf  = 0;
+        /* This part of code can be incorrect with DD,
+         * since the atom ordering in s_b and s_min might differ.
+         */
+        for (i = mdatoms->start; i < mdatoms->start+mdatoms->homenr; i++)
+        {
+            if (mdatoms->cFREEZE)
+            {
+                gf = mdatoms->cFREEZE[i];
+            }
+            for (m = 0; m < DIM; m++)
+            {
+                if (!opts->nFreeze[gf][m])
+                {
+                    sum += (fb[i][m] - fm[i][m])*fb[i][m];
+                }
+            }
+        }
+    }
+    else
+    {
+        /* We need to reorder cgs while summing */
+        sum = reorder_partsum(cr, opts, mdatoms, mtop, s_min, s_b);
+    }
+    if (PAR(cr))
+    {
+        gmx_sumd(1, &sum, cr);
+    }
+
+    return sum/sqr(s_min->fnorm);
+}
+
+double do_cg(FILE *fplog, t_commrec *cr,
+             int nfile, const t_filenm fnm[],
+             const output_env_t oenv, gmx_bool bVerbose, gmx_bool bCompact,
+             int nstglobalcomm,
+             gmx_vsite_t *vsite, gmx_constr_t constr,
+             int stepout,
+             t_inputrec *inputrec,
+             gmx_mtop_t *top_global, t_fcdata *fcd,
+             t_state *state_global,
+             t_mdatoms *mdatoms,
+             t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+             gmx_edsam_t ed,
+             t_forcerec *fr,
+             int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
+             gmx_membed_t membed,
+             real cpt_period, real max_hours,
+             const char *deviceOptions,
+             unsigned long Flags,
+             gmx_runtime_t *runtime)
+{
+    const char       *CG = "Polak-Ribiere Conjugate Gradients";
+
+    em_state_t       *s_min, *s_a, *s_b, *s_c;
+    gmx_localtop_t   *top;
+    gmx_enerdata_t   *enerd;
+    rvec             *f;
+    gmx_global_stat_t gstat;
+    t_graph          *graph;
+    rvec             *f_global, *p, *sf, *sfm;
+    double            gpa, gpb, gpc, tmp, sum[2], minstep;
+    real              fnormn;
+    real              stepsize;
+    real              a, b, c, beta = 0.0;
+    real              epot_repl = 0;
+    real              pnorm;
+    t_mdebin         *mdebin;
+    gmx_bool          converged, foundlower;
+    rvec              mu_tot;
+    gmx_bool          do_log = FALSE, do_ene = FALSE, do_x, do_f;
+    tensor            vir, pres;
+    int               number_steps, neval = 0, nstcg = inputrec->nstcgsteep;
+    gmx_mdoutf_t     *outf;
+    int               i, m, gf, step, nminstep;
+    real              terminate = 0;
+
+    step = 0;
+
+    s_min = init_em_state();
+    s_a   = init_em_state();
+    s_b   = init_em_state();
+    s_c   = init_em_state();
+
+    /* Init em and store the local state in s_min */
+    init_em(fplog, CG, cr, inputrec,
+            state_global, top_global, s_min, &top, &f, &f_global,
+            nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
+            nfile, fnm, &outf, &mdebin);
+
+    /* Print to log file */
+    print_em_start(fplog, cr, runtime, wcycle, CG);
+
+    /* Max number of steps */
+    number_steps = inputrec->nsteps;
+
+    if (MASTER(cr))
+    {
+        sp_header(stderr, CG, inputrec->em_tol, number_steps);
+    }
+    if (fplog)
+    {
+        sp_header(fplog, CG, inputrec->em_tol, number_steps);
+    }
+
+    /* Call the force routine and some auxiliary (neighboursearching etc.) */
+    /* do_force always puts the charge groups in the box and shifts again
+     * We do not unshift, so molecules are always whole in congrad.c
+     */
+    evaluate_energy(fplog, bVerbose, cr,
+                    state_global, top_global, s_min, top,
+                    inputrec, nrnb, wcycle, gstat,
+                    vsite, constr, fcd, graph, mdatoms, fr,
+                    mu_tot, enerd, vir, pres, -1, TRUE);
+    where();
+
+    if (MASTER(cr))
+    {
+        /* Copy stuff to the energy bin for easy printing etc. */
+        upd_mdebin(mdebin, FALSE, FALSE, (double)step,
+                   mdatoms->tmass, enerd, &s_min->s, inputrec->fepvals, inputrec->expandedvals, s_min->s.box,
+                   NULL, NULL, vir, pres, NULL, mu_tot, constr);
+
+        print_ebin_header(fplog, step, step, s_min->s.lambda[efptFEP]);
+        print_ebin(outf->fp_ene, TRUE, FALSE, FALSE, fplog, step, step, eprNORMAL,
+                   TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+    }
+    where();
+
+    /* Estimate/guess the initial stepsize */
+    stepsize = inputrec->em_stepsize/s_min->fnorm;
+
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "   F-max             = %12.5e on atom %d\n",
+                s_min->fmax, s_min->a_fmax+1);
+        fprintf(stderr, "   F-Norm            = %12.5e\n",
+                s_min->fnorm/sqrt(state_global->natoms));
+        fprintf(stderr, "\n");
+        /* and copy to the log file too... */
+        fprintf(fplog, "   F-max             = %12.5e on atom %d\n",
+                s_min->fmax, s_min->a_fmax+1);
+        fprintf(fplog, "   F-Norm            = %12.5e\n",
+                s_min->fnorm/sqrt(state_global->natoms));
+        fprintf(fplog, "\n");
+    }
+    /* Start the loop over CG steps.
+     * Each successful step is counted, and we continue until
+     * we either converge or reach the max number of steps.
+     */
+    converged = FALSE;
+    for (step = 0; (number_steps < 0 || (number_steps >= 0 && step <= number_steps)) && !converged; step++)
+    {
+
+        /* start taking steps in a new direction
+         * First time we enter the routine, beta=0, and the direction is
+         * simply the negative gradient.
+         */
+
+        /* Calculate the new direction in p, and the gradient in this direction, gpa */
+        p   = s_min->s.cg_p;
+        sf  = s_min->f;
+        gpa = 0;
+        gf  = 0;
+        for (i = mdatoms->start; i < mdatoms->start+mdatoms->homenr; i++)
+        {
+            if (mdatoms->cFREEZE)
+            {
+                gf = mdatoms->cFREEZE[i];
+            }
+            for (m = 0; m < DIM; m++)
+            {
+                if (!inputrec->opts.nFreeze[gf][m])
+                {
+                    p[i][m] = sf[i][m] + beta*p[i][m];
+                    gpa    -= p[i][m]*sf[i][m];
+                    /* f is negative gradient, thus the sign */
+                }
+                else
+                {
+                    p[i][m] = 0;
+                }
+            }
+        }
+
+        /* Sum the gradient along the line across CPUs */
+        if (PAR(cr))
+        {
+            gmx_sumd(1, &gpa, cr);
+        }
+
+        /* Calculate the norm of the search vector */
+        get_f_norm_max(cr, &(inputrec->opts), mdatoms, p, &pnorm, NULL, NULL);
+
+        /* Just in case stepsize reaches zero due to numerical precision... */
+        if (stepsize <= 0)
+        {
+            stepsize = inputrec->em_stepsize/pnorm;
+        }
+
+        /*
+         * Double check the value of the derivative in the search direction.
+         * If it is positive it must be due to the old information in the
+         * CG formula, so just remove that and start over with beta=0.
+         * This corresponds to a steepest descent step.
+         */
+        if (gpa > 0)
+        {
+            beta = 0;
+            step--;   /* Don't count this step since we are restarting */
+            continue; /* Go back to the beginning of the big for-loop */
+        }
+
+        /* Calculate minimum allowed stepsize, before the average (norm)
+         * relative change in coordinate is smaller than precision
+         */
+        minstep = 0;
+        for (i = mdatoms->start; i < mdatoms->start+mdatoms->homenr; i++)
+        {
+            for (m = 0; m < DIM; m++)
+            {
+                tmp = fabs(s_min->s.x[i][m]);
+                if (tmp < 1.0)
+                {
+                    tmp = 1.0;
+                }
+                tmp      = p[i][m]/tmp;
+                minstep += tmp*tmp;
+            }
+        }
+        /* Add up from all CPUs */
+        if (PAR(cr))
+        {
+            gmx_sumd(1, &minstep, cr);
+        }
+
+        minstep = GMX_REAL_EPS/sqrt(minstep/(3*state_global->natoms));
+
+        if (stepsize < minstep)
+        {
+            converged = TRUE;
+            break;
+        }
+
+        /* Write coordinates if necessary */
+        do_x = do_per_step(step, inputrec->nstxout);
+        do_f = do_per_step(step, inputrec->nstfout);
+
+        write_em_traj(fplog, cr, outf, do_x, do_f, NULL,
+                      top_global, inputrec, step,
+                      s_min, state_global, f_global);
+
+        /* Take a step downhill.
+         * In theory, we should minimize the function along this direction.
+         * That is quite possible, but it turns out to take 5-10 function evaluations
+         * for each line. However, we dont really need to find the exact minimum -
+         * it is much better to start a new CG step in a modified direction as soon
+         * as we are close to it. This will save a lot of energy evaluations.
+         *
+         * In practice, we just try to take a single step.
+         * If it worked (i.e. lowered the energy), we increase the stepsize but
+         * the continue straight to the next CG step without trying to find any minimum.
+         * If it didn't work (higher energy), there must be a minimum somewhere between
+         * the old position and the new one.
+         *
+         * Due to the finite numerical accuracy, it turns out that it is a good idea
+         * to even accept a SMALL increase in energy, if the derivative is still downhill.
+         * This leads to lower final energies in the tests I've done. / Erik
+         */
+        s_a->epot = s_min->epot;
+        a         = 0.0;
+        c         = a + stepsize; /* reference position along line is zero */
+
+        if (DOMAINDECOMP(cr) && s_min->s.ddp_count < cr->dd->ddp_count)
+        {
+            em_dd_partition_system(fplog, step, cr, top_global, inputrec,
+                                   s_min, top, mdatoms, fr, vsite, constr,
+                                   nrnb, wcycle);
+        }
+
+        /* Take a trial step (new coords in s_c) */
+        do_em_step(cr, inputrec, mdatoms, fr->bMolPBC, s_min, c, s_min->s.cg_p, s_c,
+                   constr, top, nrnb, wcycle, -1);
+
+        neval++;
+        /* Calculate energy for the trial step */
+        evaluate_energy(fplog, bVerbose, cr,
+                        state_global, top_global, s_c, top,
+                        inputrec, nrnb, wcycle, gstat,
+                        vsite, constr, fcd, graph, mdatoms, fr,
+                        mu_tot, enerd, vir, pres, -1, FALSE);
+
+        /* Calc derivative along line */
+        p   = s_c->s.cg_p;
+        sf  = s_c->f;
+        gpc = 0;
+        for (i = mdatoms->start; i < mdatoms->start+mdatoms->homenr; i++)
+        {
+            for (m = 0; m < DIM; m++)
+            {
+                gpc -= p[i][m]*sf[i][m]; /* f is negative gradient, thus the sign */
+            }
+        }
+        /* Sum the gradient along the line across CPUs */
+        if (PAR(cr))
+        {
+            gmx_sumd(1, &gpc, cr);
+        }
+
+        /* This is the max amount of increase in energy we tolerate */
+        tmp = sqrt(GMX_REAL_EPS)*fabs(s_a->epot);
+
+        /* Accept the step if the energy is lower, or if it is not significantly higher
+         * and the line derivative is still negative.
+         */
+        if (s_c->epot < s_a->epot || (gpc < 0 && s_c->epot < (s_a->epot + tmp)))
+        {
+            foundlower = TRUE;
+            /* Great, we found a better energy. Increase step for next iteration
+             * if we are still going down, decrease it otherwise
+             */
+            if (gpc < 0)
+            {
+                stepsize *= 1.618034; /* The golden section */
+            }
+            else
+            {
+                stepsize *= 0.618034; /* 1/golden section */
+            }
+        }
+        else
+        {
+            /* New energy is the same or higher. We will have to do some work
+             * to find a smaller value in the interval. Take smaller step next time!
+             */
+            foundlower = FALSE;
+            stepsize  *= 0.618034;
+        }
+
+
+
+
+        /* OK, if we didn't find a lower value we will have to locate one now - there must
+         * be one in the interval [a=0,c].
+         * The same thing is valid here, though: Don't spend dozens of iterations to find
+         * the line minimum. We try to interpolate based on the derivative at the endpoints,
+         * and only continue until we find a lower value. In most cases this means 1-2 iterations.
+         *
+         * I also have a safeguard for potentially really patological functions so we never
+         * take more than 20 steps before we give up ...
+         *
+         * If we already found a lower value we just skip this step and continue to the update.
+         */
+        if (!foundlower)
+        {
+            nminstep = 0;
+
+            do
+            {
+                /* Select a new trial point.
+                 * If the derivatives at points a & c have different sign we interpolate to zero,
+                 * otherwise just do a bisection.
+                 */
+                if (gpa < 0 && gpc > 0)
+                {
+                    b = a + gpa*(a-c)/(gpc-gpa);
+                }
+                else
+                {
+                    b = 0.5*(a+c);
+                }
+
+                /* safeguard if interpolation close to machine accuracy causes errors:
+                 * never go outside the interval
+                 */
+                if (b <= a || b >= c)
+                {
+                    b = 0.5*(a+c);
+                }
+
+                if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
+                {
+                    /* Reload the old state */
+                    em_dd_partition_system(fplog, -1, cr, top_global, inputrec,
+                                           s_min, top, mdatoms, fr, vsite, constr,
+                                           nrnb, wcycle);
+                }
+
+                /* Take a trial step to this new point - new coords in s_b */
+                do_em_step(cr, inputrec, mdatoms, fr->bMolPBC, s_min, b, s_min->s.cg_p, s_b,
+                           constr, top, nrnb, wcycle, -1);
+
+                neval++;
+                /* Calculate energy for the trial step */
+                evaluate_energy(fplog, bVerbose, cr,
+                                state_global, top_global, s_b, top,
+                                inputrec, nrnb, wcycle, gstat,
+                                vsite, constr, fcd, graph, mdatoms, fr,
+                                mu_tot, enerd, vir, pres, -1, FALSE);
+
+                /* p does not change within a step, but since the domain decomposition
+                 * might change, we have to use cg_p of s_b here.
+                 */
+                p   = s_b->s.cg_p;
+                sf  = s_b->f;
+                gpb = 0;
+                for (i = mdatoms->start; i < mdatoms->start+mdatoms->homenr; i++)
+                {
+                    for (m = 0; m < DIM; m++)
+                    {
+                        gpb -= p[i][m]*sf[i][m]; /* f is negative gradient, thus the sign */
+                    }
+                }
+                /* Sum the gradient along the line across CPUs */
+                if (PAR(cr))
+                {
+                    gmx_sumd(1, &gpb, cr);
+                }
+
+                if (debug)
+                {
+                    fprintf(debug, "CGE: EpotA %f EpotB %f EpotC %f gpb %f\n",
+                            s_a->epot, s_b->epot, s_c->epot, gpb);
+                }
+
+                epot_repl = s_b->epot;
+
+                /* Keep one of the intervals based on the value of the derivative at the new point */
+                if (gpb > 0)
+                {
+                    /* Replace c endpoint with b */
+                    swap_em_state(s_b, s_c);
+                    c   = b;
+                    gpc = gpb;
+                }
+                else
+                {
+                    /* Replace a endpoint with b */
+                    swap_em_state(s_b, s_a);
+                    a   = b;
+                    gpa = gpb;
+                }
+
+                /*
+                 * Stop search as soon as we find a value smaller than the endpoints.
+                 * Never run more than 20 steps, no matter what.
+                 */
+                nminstep++;
+            }
+            while ((epot_repl > s_a->epot || epot_repl > s_c->epot) &&
+                   (nminstep < 20));
+
+            if (fabs(epot_repl - s_min->epot) < fabs(s_min->epot)*GMX_REAL_EPS ||
+                nminstep >= 20)
+            {
+                /* OK. We couldn't find a significantly lower energy.
+                 * If beta==0 this was steepest descent, and then we give up.
+                 * If not, set beta=0 and restart with steepest descent before quitting.
+                 */
+                if (beta == 0.0)
+                {
+                    /* Converged */
+                    converged = TRUE;
+                    break;
+                }
+                else
+                {
+                    /* Reset memory before giving up */
+                    beta = 0.0;
+                    continue;
+                }
+            }
+
+            /* Select min energy state of A & C, put the best in B.
+             */
+            if (s_c->epot < s_a->epot)
+            {
+                if (debug)
+                {
+                    fprintf(debug, "CGE: C (%f) is lower than A (%f), moving C to B\n",
+                            s_c->epot, s_a->epot);
+                }
+                swap_em_state(s_b, s_c);
+                gpb = gpc;
+                b   = c;
+            }
+            else
+            {
+                if (debug)
+                {
+                    fprintf(debug, "CGE: A (%f) is lower than C (%f), moving A to B\n",
+                            s_a->epot, s_c->epot);
+                }
+                swap_em_state(s_b, s_a);
+                gpb = gpa;
+                b   = a;
+            }
+
+        }
+        else
+        {
+            if (debug)
+            {
+                fprintf(debug, "CGE: Found a lower energy %f, moving C to B\n",
+                        s_c->epot);
+            }
+            swap_em_state(s_b, s_c);
+            gpb = gpc;
+            b   = c;
+        }
+
+        /* new search direction */
+        /* beta = 0 means forget all memory and restart with steepest descents. */
+        if (nstcg && ((step % nstcg) == 0))
+        {
+            beta = 0.0;
+        }
+        else
+        {
+            /* s_min->fnorm cannot be zero, because then we would have converged
+             * and broken out.
+             */
+
+            /* Polak-Ribiere update.
+             * Change to fnorm2/fnorm2_old for Fletcher-Reeves
+             */
+            beta = pr_beta(cr, &inputrec->opts, mdatoms, top_global, s_min, s_b);
+        }
+        /* Limit beta to prevent oscillations */
+        if (fabs(beta) > 5.0)
+        {
+            beta = 0.0;
+        }
+
+
+        /* update positions */
+        swap_em_state(s_min, s_b);
+        gpa = gpb;
+
+        /* Print it if necessary */
+        if (MASTER(cr))
+        {
+            if (bVerbose)
+            {
+                fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
+                        step, s_min->epot, s_min->fnorm/sqrt(state_global->natoms),
+                        s_min->fmax, s_min->a_fmax+1);
+            }
+            /* Store the new (lower) energies */
+            upd_mdebin(mdebin, FALSE, FALSE, (double)step,
+                       mdatoms->tmass, enerd, &s_min->s, inputrec->fepvals, inputrec->expandedvals, s_min->s.box,
+                       NULL, NULL, vir, pres, NULL, mu_tot, constr);
+
+            do_log = do_per_step(step, inputrec->nstlog);
+            do_ene = do_per_step(step, inputrec->nstenergy);
+            if (do_log)
+            {
+                print_ebin_header(fplog, step, step, s_min->s.lambda[efptFEP]);
+            }
+            print_ebin(outf->fp_ene, do_ene, FALSE, FALSE,
+                       do_log ? fplog : NULL, step, step, eprNORMAL,
+                       TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+        }
+
+        /* Stop when the maximum force lies below tolerance.
+         * If we have reached machine precision, converged is already set to true.
+         */
+        converged = converged || (s_min->fmax < inputrec->em_tol);
+
+    } /* End of the loop */
+
+    if (converged)
+    {
+        step--; /* we never took that last step in this case */
+
+    }
+    if (s_min->fmax > inputrec->em_tol)
+    {
+        if (MASTER(cr))
+        {
+            warn_step(stderr, inputrec->em_tol, step-1 == number_steps, FALSE);
+            warn_step(fplog, inputrec->em_tol, step-1 == number_steps, FALSE);
+        }
+        converged = FALSE;
+    }
+
+    if (MASTER(cr))
+    {
+        /* If we printed energy and/or logfile last step (which was the last step)
+         * we don't have to do it again, but otherwise print the final values.
+         */
+        if (!do_log)
+        {
+            /* Write final value to log since we didn't do anything the last step */
+            print_ebin_header(fplog, step, step, s_min->s.lambda[efptFEP]);
+        }
+        if (!do_ene || !do_log)
+        {
+            /* Write final energy file entries */
+            print_ebin(outf->fp_ene, !do_ene, FALSE, FALSE,
+                       !do_log ? fplog : NULL, step, step, eprNORMAL,
+                       TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+        }
+    }
+
+    /* Print some stuff... */
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "\nwriting lowest energy coordinates.\n");
+    }
+
+    /* IMPORTANT!
+     * For accurate normal mode calculation it is imperative that we
+     * store the last conformation into the full precision binary trajectory.
+     *
+     * However, we should only do it if we did NOT already write this step
+     * above (which we did if do_x or do_f was true).
+     */
+    do_x = !do_per_step(step, inputrec->nstxout);
+    do_f = (inputrec->nstfout > 0 && !do_per_step(step, inputrec->nstfout));
+
+    write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm),
+                  top_global, inputrec, step,
+                  s_min, state_global, f_global);
+
+    fnormn = s_min->fnorm/sqrt(state_global->natoms);
+
+    if (MASTER(cr))
+    {
+        print_converged(stderr, CG, inputrec->em_tol, step, converged, number_steps,
+                        s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
+        print_converged(fplog, CG, inputrec->em_tol, step, converged, number_steps,
+                        s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
+
+        fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
+    }
+
+    finish_em(fplog, cr, outf, runtime, wcycle);
+
+    /* To print the actual number of steps we needed somewhere */
+    runtime->nsteps_done = step;
+
+    return 0;
+} /* That's all folks */
+
+
+double do_lbfgs(FILE *fplog, t_commrec *cr,
+                int nfile, const t_filenm fnm[],
+                const output_env_t oenv, gmx_bool bVerbose, gmx_bool bCompact,
+                int nstglobalcomm,
+                gmx_vsite_t *vsite, gmx_constr_t constr,
+                int stepout,
+                t_inputrec *inputrec,
+                gmx_mtop_t *top_global, t_fcdata *fcd,
+                t_state *state,
+                t_mdatoms *mdatoms,
+                t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+                gmx_edsam_t ed,
+                t_forcerec *fr,
+                int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
+                gmx_membed_t membed,
+                real cpt_period, real max_hours,
+                const char *deviceOptions,
+                unsigned long Flags,
+                gmx_runtime_t *runtime)
+{
+    static const char *LBFGS = "Low-Memory BFGS Minimizer";
+    em_state_t         ems;
+    gmx_localtop_t    *top;
+    gmx_enerdata_t    *enerd;
+    rvec              *f;
+    gmx_global_stat_t  gstat;
+    t_graph           *graph;
+    rvec              *f_global;
+    int                ncorr, nmaxcorr, point, cp, neval, nminstep;
+    double             stepsize, gpa, gpb, gpc, tmp, minstep;
+    real              *rho, *alpha, *ff, *xx, *p, *s, *lastx, *lastf, **dx, **dg;
+    real              *xa, *xb, *xc, *fa, *fb, *fc, *xtmp, *ftmp;
+    real               a, b, c, maxdelta, delta;
+    real               diag, Epot0, Epot, EpotA, EpotB, EpotC;
+    real               dgdx, dgdg, sq, yr, beta;
+    t_mdebin          *mdebin;
+    gmx_bool           converged, first;
+    rvec               mu_tot;
+    real               fnorm, fmax;
+    gmx_bool           do_log, do_ene, do_x, do_f, foundlower, *frozen;
+    tensor             vir, pres;
+    int                start, end, number_steps;
+    gmx_mdoutf_t      *outf;
+    int                i, k, m, n, nfmax, gf, step;
+    int                mdof_flags;
+    /* not used */
+    real               terminate;
+
+    if (PAR(cr))
+    {
+        gmx_fatal(FARGS, "Cannot do parallel L-BFGS Minimization - yet.\n");
+    }
+
+    if (NULL != constr)
+    {
+        gmx_fatal(FARGS, "The combination of constraints and L-BFGS minimization is not implemented. Either do not use constraints, or use another minimizer (e.g. steepest descent).");
+    }
+
+    n        = 3*state->natoms;
+    nmaxcorr = inputrec->nbfgscorr;
+
+    /* Allocate memory */
+    /* Use pointers to real so we dont have to loop over both atoms and
+     * dimensions all the time...
+     * x/f are allocated as rvec *, so make new x0/f0 pointers-to-real
+     * that point to the same memory.
+     */
+    snew(xa, n);
+    snew(xb, n);
+    snew(xc, n);
+    snew(fa, n);
+    snew(fb, n);
+    snew(fc, n);
+    snew(frozen, n);
+
+    snew(p, n);
+    snew(lastx, n);
+    snew(lastf, n);
+    snew(rho, nmaxcorr);
+    snew(alpha, nmaxcorr);
+
+    snew(dx, nmaxcorr);
+    for (i = 0; i < nmaxcorr; i++)
+    {
+        snew(dx[i], n);
+    }
+
+    snew(dg, nmaxcorr);
+    for (i = 0; i < nmaxcorr; i++)
+    {
+        snew(dg[i], n);
+    }
+
+    step  = 0;
+    neval = 0;
+
+    /* Init em */
+    init_em(fplog, LBFGS, cr, inputrec,
+            state, top_global, &ems, &top, &f, &f_global,
+            nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
+            nfile, fnm, &outf, &mdebin);
+    /* Do_lbfgs is not completely updated like do_steep and do_cg,
+     * so we free some memory again.
+     */
+    sfree(ems.s.x);
+    sfree(ems.f);
+
+    xx = (real *)state->x;
+    ff = (real *)f;
+
+    start = mdatoms->start;
+    end   = mdatoms->homenr + start;
+
+    /* Print to log file */
+    print_em_start(fplog, cr, runtime, wcycle, LBFGS);
+
+    do_log = do_ene = do_x = do_f = TRUE;
+
+    /* Max number of steps */
+    number_steps = inputrec->nsteps;
+
+    /* Create a 3*natoms index to tell whether each degree of freedom is frozen */
+    gf = 0;
+    for (i = start; i < end; i++)
+    {
+        if (mdatoms->cFREEZE)
+        {
+            gf = mdatoms->cFREEZE[i];
+        }
+        for (m = 0; m < DIM; m++)
+        {
+            frozen[3*i+m] = inputrec->opts.nFreeze[gf][m];
+        }
+    }
+    if (MASTER(cr))
+    {
+        sp_header(stderr, LBFGS, inputrec->em_tol, number_steps);
+    }
+    if (fplog)
+    {
+        sp_header(fplog, LBFGS, inputrec->em_tol, number_steps);
+    }
+
+    if (vsite)
+    {
+        construct_vsites(fplog, vsite, state->x, nrnb, 1, NULL,
+                         top->idef.iparams, top->idef.il,
+                         fr->ePBC, fr->bMolPBC, graph, cr, state->box);
+    }
+
+    /* Call the force routine and some auxiliary (neighboursearching etc.) */
+    /* do_force always puts the charge groups in the box and shifts again
+     * We do not unshift, so molecules are always whole
+     */
+    neval++;
+    ems.s.x = state->x;
+    ems.f   = f;
+    evaluate_energy(fplog, bVerbose, cr,
+                    state, top_global, &ems, top,
+                    inputrec, nrnb, wcycle, gstat,
+                    vsite, constr, fcd, graph, mdatoms, fr,
+                    mu_tot, enerd, vir, pres, -1, TRUE);
+    where();
+
+    if (MASTER(cr))
+    {
+        /* Copy stuff to the energy bin for easy printing etc. */
+        upd_mdebin(mdebin, FALSE, FALSE, (double)step,
+                   mdatoms->tmass, enerd, state, inputrec->fepvals, inputrec->expandedvals, state->box,
+                   NULL, NULL, vir, pres, NULL, mu_tot, constr);
+
+        print_ebin_header(fplog, step, step, state->lambda[efptFEP]);
+        print_ebin(outf->fp_ene, TRUE, FALSE, FALSE, fplog, step, step, eprNORMAL,
+                   TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+    }
+    where();
+
+    /* This is the starting energy */
+    Epot = enerd->term[F_EPOT];
+
+    fnorm = ems.fnorm;
+    fmax  = ems.fmax;
+    nfmax = ems.a_fmax;
+
+    /* Set the initial step.
+     * since it will be multiplied by the non-normalized search direction
+     * vector (force vector the first time), we scale it by the
+     * norm of the force.
+     */
+
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "Using %d BFGS correction steps.\n\n", nmaxcorr);
+        fprintf(stderr, "   F-max             = %12.5e on atom %d\n", fmax, nfmax+1);
+        fprintf(stderr, "   F-Norm            = %12.5e\n", fnorm/sqrt(state->natoms));
+        fprintf(stderr, "\n");
+        /* and copy to the log file too... */
+        fprintf(fplog, "Using %d BFGS correction steps.\n\n", nmaxcorr);
+        fprintf(fplog, "   F-max             = %12.5e on atom %d\n", fmax, nfmax+1);
+        fprintf(fplog, "   F-Norm            = %12.5e\n", fnorm/sqrt(state->natoms));
+        fprintf(fplog, "\n");
+    }
+
+    point = 0;
+    for (i = 0; i < n; i++)
+    {
+        if (!frozen[i])
+        {
+            dx[point][i] = ff[i]; /* Initial search direction */
+        }
+        else
+        {
+            dx[point][i] = 0;
+        }
+    }
+
+    stepsize  = 1.0/fnorm;
+    converged = FALSE;
+
+    /* Start the loop over BFGS steps.
+     * Each successful step is counted, and we continue until
+     * we either converge or reach the max number of steps.
+     */
+
+    ncorr = 0;
+
+    /* Set the gradient from the force */
+    converged = FALSE;
+    for (step = 0; (number_steps < 0 || (number_steps >= 0 && step <= number_steps)) && !converged; step++)
+    {
+
+        /* Write coordinates if necessary */
+        do_x = do_per_step(step, inputrec->nstxout);
+        do_f = do_per_step(step, inputrec->nstfout);
+
+        mdof_flags = 0;
+        if (do_x)
+        {
+            mdof_flags |= MDOF_X;
+        }
+
+        if (do_f)
+        {
+            mdof_flags |= MDOF_F;
+        }
+
+        write_traj(fplog, cr, outf, mdof_flags,
+                   top_global, step, (real)step, state, state, f, f, NULL, NULL);
+
+        /* Do the linesearching in the direction dx[point][0..(n-1)] */
+
+        /* pointer to current direction - point=0 first time here */
+        s = dx[point];
+
+        /* calculate line gradient */
+        for (gpa = 0, i = 0; i < n; i++)
+        {
+            gpa -= s[i]*ff[i];
+        }
+
+        /* Calculate minimum allowed stepsize, before the average (norm)
+         * relative change in coordinate is smaller than precision
+         */
+        for (minstep = 0, i = 0; i < n; i++)
+        {
+            tmp = fabs(xx[i]);
+            if (tmp < 1.0)
+            {
+                tmp = 1.0;
+            }
+            tmp      = s[i]/tmp;
+            minstep += tmp*tmp;
+        }
+        minstep = GMX_REAL_EPS/sqrt(minstep/n);
+
+        if (stepsize < minstep)
+        {
+            converged = TRUE;
+            break;
+        }
+
+        /* Store old forces and coordinates */
+        for (i = 0; i < n; i++)
+        {
+            lastx[i] = xx[i];
+            lastf[i] = ff[i];
+        }
+        Epot0 = Epot;
+
+        first = TRUE;
+
+        for (i = 0; i < n; i++)
+        {
+            xa[i] = xx[i];
+        }
+
+        /* Take a step downhill.
+         * In theory, we should minimize the function along this direction.
+         * That is quite possible, but it turns out to take 5-10 function evaluations
+         * for each line. However, we dont really need to find the exact minimum -
+         * it is much better to start a new BFGS step in a modified direction as soon
+         * as we are close to it. This will save a lot of energy evaluations.
+         *
+         * In practice, we just try to take a single step.
+         * If it worked (i.e. lowered the energy), we increase the stepsize but
+         * the continue straight to the next BFGS step without trying to find any minimum.
+         * If it didn't work (higher energy), there must be a minimum somewhere between
+         * the old position and the new one.
+         *
+         * Due to the finite numerical accuracy, it turns out that it is a good idea
+         * to even accept a SMALL increase in energy, if the derivative is still downhill.
+         * This leads to lower final energies in the tests I've done. / Erik
+         */
+        foundlower = FALSE;
+        EpotA      = Epot0;
+        a          = 0.0;
+        c          = a + stepsize; /* reference position along line is zero */
+
+        /* Check stepsize first. We do not allow displacements
+         * larger than emstep.
+         */
+        do
+        {
+            c        = a + stepsize;
+            maxdelta = 0;
+            for (i = 0; i < n; i++)
+            {
+                delta = c*s[i];
+                if (delta > maxdelta)
+                {
+                    maxdelta = delta;
+                }
+            }
+            if (maxdelta > inputrec->em_stepsize)
+            {
+                stepsize *= 0.1;
+            }
+        }
+        while (maxdelta > inputrec->em_stepsize);
+
+        /* Take a trial step */
+        for (i = 0; i < n; i++)
+        {
+            xc[i] = lastx[i] + c*s[i];
+        }
+
+        neval++;
+        /* Calculate energy for the trial step */
+        ems.s.x = (rvec *)xc;
+        ems.f   = (rvec *)fc;
+        evaluate_energy(fplog, bVerbose, cr,
+                        state, top_global, &ems, top,
+                        inputrec, nrnb, wcycle, gstat,
+                        vsite, constr, fcd, graph, mdatoms, fr,
+                        mu_tot, enerd, vir, pres, step, FALSE);
+        EpotC = ems.epot;
+
+        /* Calc derivative along line */
+        for (gpc = 0, i = 0; i < n; i++)
+        {
+            gpc -= s[i]*fc[i]; /* f is negative gradient, thus the sign */
+        }
+        /* Sum the gradient along the line across CPUs */
+        if (PAR(cr))
+        {
+            gmx_sumd(1, &gpc, cr);
+        }
+
+        /* This is the max amount of increase in energy we tolerate */
+        tmp = sqrt(GMX_REAL_EPS)*fabs(EpotA);
+
+        /* Accept the step if the energy is lower, or if it is not significantly higher
+         * and the line derivative is still negative.
+         */
+        if (EpotC < EpotA || (gpc < 0 && EpotC < (EpotA+tmp)))
+        {
+            foundlower = TRUE;
+            /* Great, we found a better energy. Increase step for next iteration
+             * if we are still going down, decrease it otherwise
+             */
+            if (gpc < 0)
+            {
+                stepsize *= 1.618034; /* The golden section */
+            }
+            else
+            {
+                stepsize *= 0.618034; /* 1/golden section */
+            }
+        }
+        else
+        {
+            /* New energy is the same or higher. We will have to do some work
+             * to find a smaller value in the interval. Take smaller step next time!
+             */
+            foundlower = FALSE;
+            stepsize  *= 0.618034;
+        }
+
+        /* OK, if we didn't find a lower value we will have to locate one now - there must
+         * be one in the interval [a=0,c].
+         * The same thing is valid here, though: Don't spend dozens of iterations to find
+         * the line minimum. We try to interpolate based on the derivative at the endpoints,
+         * and only continue until we find a lower value. In most cases this means 1-2 iterations.
+         *
+         * I also have a safeguard for potentially really patological functions so we never
+         * take more than 20 steps before we give up ...
+         *
+         * If we already found a lower value we just skip this step and continue to the update.
+         */
+
+        if (!foundlower)
+        {
+
+            nminstep = 0;
+            do
+            {
+                /* Select a new trial point.
+                 * If the derivatives at points a & c have different sign we interpolate to zero,
+                 * otherwise just do a bisection.
+                 */
+
+                if (gpa < 0 && gpc > 0)
+                {
+                    b = a + gpa*(a-c)/(gpc-gpa);
+                }
+                else
+                {
+                    b = 0.5*(a+c);
+                }
+
+                /* safeguard if interpolation close to machine accuracy causes errors:
+                 * never go outside the interval
+                 */
+                if (b <= a || b >= c)
+                {
+                    b = 0.5*(a+c);
+                }
+
+                /* Take a trial step */
+                for (i = 0; i < n; i++)
+                {
+                    xb[i] = lastx[i] + b*s[i];
+                }
+
+                neval++;
+                /* Calculate energy for the trial step */
+                ems.s.x = (rvec *)xb;
+                ems.f   = (rvec *)fb;
+                evaluate_energy(fplog, bVerbose, cr,
+                                state, top_global, &ems, top,
+                                inputrec, nrnb, wcycle, gstat,
+                                vsite, constr, fcd, graph, mdatoms, fr,
+                                mu_tot, enerd, vir, pres, step, FALSE);
+                EpotB = ems.epot;
+
+                fnorm = ems.fnorm;
+
+                for (gpb = 0, i = 0; i < n; i++)
+                {
+                    gpb -= s[i]*fb[i]; /* f is negative gradient, thus the sign */
+
+                }
+                /* Sum the gradient along the line across CPUs */
+                if (PAR(cr))
+                {
+                    gmx_sumd(1, &gpb, cr);
+                }
+
+                /* Keep one of the intervals based on the value of the derivative at the new point */
+                if (gpb > 0)
+                {
+                    /* Replace c endpoint with b */
+                    EpotC = EpotB;
+                    c     = b;
+                    gpc   = gpb;
+                    /* swap coord pointers b/c */
+                    xtmp = xb;
+                    ftmp = fb;
+                    xb   = xc;
+                    fb   = fc;
+                    xc   = xtmp;
+                    fc   = ftmp;
+                }
+                else
+                {
+                    /* Replace a endpoint with b */
+                    EpotA = EpotB;
+                    a     = b;
+                    gpa   = gpb;
+                    /* swap coord pointers a/b */
+                    xtmp = xb;
+                    ftmp = fb;
+                    xb   = xa;
+                    fb   = fa;
+                    xa   = xtmp;
+                    fa   = ftmp;
+                }
+
+                /*
+                 * Stop search as soon as we find a value smaller than the endpoints,
+                 * or if the tolerance is below machine precision.
+                 * Never run more than 20 steps, no matter what.
+                 */
+                nminstep++;
+            }
+            while ((EpotB > EpotA || EpotB > EpotC) && (nminstep < 20));
+
+            if (fabs(EpotB-Epot0) < GMX_REAL_EPS || nminstep >= 20)
+            {
+                /* OK. We couldn't find a significantly lower energy.
+                 * If ncorr==0 this was steepest descent, and then we give up.
+                 * If not, reset memory to restart as steepest descent before quitting.
+                 */
+                if (ncorr == 0)
+                {
+                    /* Converged */
+                    converged = TRUE;
+                    break;
+                }
+                else
+                {
+                    /* Reset memory */
+                    ncorr = 0;
+                    /* Search in gradient direction */
+                    for (i = 0; i < n; i++)
+                    {
+                        dx[point][i] = ff[i];
+                    }
+                    /* Reset stepsize */
+                    stepsize = 1.0/fnorm;
+                    continue;
+                }
+            }
+
+            /* Select min energy state of A & C, put the best in xx/ff/Epot
+             */
+            if (EpotC < EpotA)
+            {
+                Epot = EpotC;
+                /* Use state C */
+                for (i = 0; i < n; i++)
+                {
+                    xx[i] = xc[i];
+                    ff[i] = fc[i];
+                }
+                stepsize = c;
+            }
+            else
+            {
+                Epot = EpotA;
+                /* Use state A */
+                for (i = 0; i < n; i++)
+                {
+                    xx[i] = xa[i];
+                    ff[i] = fa[i];
+                }
+                stepsize = a;
+            }
+
+        }
+        else
+        {
+            /* found lower */
+            Epot = EpotC;
+            /* Use state C */
+            for (i = 0; i < n; i++)
+            {
+                xx[i] = xc[i];
+                ff[i] = fc[i];
+            }
+            stepsize = c;
+        }
+
+        /* Update the memory information, and calculate a new
+         * approximation of the inverse hessian
+         */
+
+        /* Have new data in Epot, xx, ff */
+        if (ncorr < nmaxcorr)
+        {
+            ncorr++;
+        }
+
+        for (i = 0; i < n; i++)
+        {
+            dg[point][i]  = lastf[i]-ff[i];
+            dx[point][i] *= stepsize;
+        }
+
+        dgdg = 0;
+        dgdx = 0;
+        for (i = 0; i < n; i++)
+        {
+            dgdg += dg[point][i]*dg[point][i];
+            dgdx += dg[point][i]*dx[point][i];
+        }
+
+        diag = dgdx/dgdg;
+
+        rho[point] = 1.0/dgdx;
+        point++;
+
+        if (point >= nmaxcorr)
+        {
+            point = 0;
+        }
+
+        /* Update */
+        for (i = 0; i < n; i++)
+        {
+            p[i] = ff[i];
+        }
+
+        cp = point;
+
+        /* Recursive update. First go back over the memory points */
+        for (k = 0; k < ncorr; k++)
+        {
+            cp--;
+            if (cp < 0)
+            {
+                cp = ncorr-1;
+            }
+
+            sq = 0;
+            for (i = 0; i < n; i++)
+            {
+                sq += dx[cp][i]*p[i];
+            }
+
+            alpha[cp] = rho[cp]*sq;
+
+            for (i = 0; i < n; i++)
+            {
+                p[i] -= alpha[cp]*dg[cp][i];
+            }
+        }
+
+        for (i = 0; i < n; i++)
+        {
+            p[i] *= diag;
+        }
+
+        /* And then go forward again */
+        for (k = 0; k < ncorr; k++)
+        {
+            yr = 0;
+            for (i = 0; i < n; i++)
+            {
+                yr += p[i]*dg[cp][i];
+            }
+
+            beta = rho[cp]*yr;
+            beta = alpha[cp]-beta;
+
+            for (i = 0; i < n; i++)
+            {
+                p[i] += beta*dx[cp][i];
+            }
+
+            cp++;
+            if (cp >= ncorr)
+            {
+                cp = 0;
+            }
+        }
+
+        for (i = 0; i < n; i++)
+        {
+            if (!frozen[i])
+            {
+                dx[point][i] = p[i];
+            }
+            else
+            {
+                dx[point][i] = 0;
+            }
+        }
+
+        stepsize = 1.0;
+
+        /* Test whether the convergence criterion is met */
+        get_f_norm_max(cr, &(inputrec->opts), mdatoms, f, &fnorm, &fmax, &nfmax);
+
+        /* Print it if necessary */
+        if (MASTER(cr))
+        {
+            if (bVerbose)
+            {
+                fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
+                        step, Epot, fnorm/sqrt(state->natoms), fmax, nfmax+1);
+            }
+            /* Store the new (lower) energies */
+            upd_mdebin(mdebin, FALSE, FALSE, (double)step,
+                       mdatoms->tmass, enerd, state, inputrec->fepvals, inputrec->expandedvals, state->box,
+                       NULL, NULL, vir, pres, NULL, mu_tot, constr);
+            do_log = do_per_step(step, inputrec->nstlog);
+            do_ene = do_per_step(step, inputrec->nstenergy);
+            if (do_log)
+            {
+                print_ebin_header(fplog, step, step, state->lambda[efptFEP]);
+            }
+            print_ebin(outf->fp_ene, do_ene, FALSE, FALSE,
+                       do_log ? fplog : NULL, step, step, eprNORMAL,
+                       TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+        }
+
+        /* Stop when the maximum force lies below tolerance.
+         * If we have reached machine precision, converged is already set to true.
+         */
+
+        converged = converged || (fmax < inputrec->em_tol);
+
+    } /* End of the loop */
+
+    if (converged)
+    {
+        step--; /* we never took that last step in this case */
+
+    }
+    if (fmax > inputrec->em_tol)
+    {
+        if (MASTER(cr))
+        {
+            warn_step(stderr, inputrec->em_tol, step-1 == number_steps, FALSE);
+            warn_step(fplog, inputrec->em_tol, step-1 == number_steps, FALSE);
+        }
+        converged = FALSE;
+    }
+
+    /* If we printed energy and/or logfile last step (which was the last step)
+     * we don't have to do it again, but otherwise print the final values.
+     */
+    if (!do_log) /* Write final value to log since we didn't do anythin last step */
+    {
+        print_ebin_header(fplog, step, step, state->lambda[efptFEP]);
+    }
+    if (!do_ene || !do_log) /* Write final energy file entries */
+    {
+        print_ebin(outf->fp_ene, !do_ene, FALSE, FALSE,
+                   !do_log ? fplog : NULL, step, step, eprNORMAL,
+                   TRUE, mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+    }
+
+    /* Print some stuff... */
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "\nwriting lowest energy coordinates.\n");
+    }
+
+    /* IMPORTANT!
+     * For accurate normal mode calculation it is imperative that we
+     * store the last conformation into the full precision binary trajectory.
+     *
+     * However, we should only do it if we did NOT already write this step
+     * above (which we did if do_x or do_f was true).
+     */
+    do_x = !do_per_step(step, inputrec->nstxout);
+    do_f = !do_per_step(step, inputrec->nstfout);
+    write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm),
+                  top_global, inputrec, step,
+                  &ems, state, f);
+
+    if (MASTER(cr))
+    {
+        print_converged(stderr, LBFGS, inputrec->em_tol, step, converged,
+                        number_steps, Epot, fmax, nfmax, fnorm/sqrt(state->natoms));
+        print_converged(fplog, LBFGS, inputrec->em_tol, step, converged,
+                        number_steps, Epot, fmax, nfmax, fnorm/sqrt(state->natoms));
+
+        fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
+    }
+
+    finish_em(fplog, cr, outf, runtime, wcycle);
+
+    /* To print the actual number of steps we needed somewhere */
+    runtime->nsteps_done = step;
+
+    return 0;
+} /* That's all folks */
+
+
+double do_steep(FILE *fplog, t_commrec *cr,
+                int nfile, const t_filenm fnm[],
+                const output_env_t oenv, gmx_bool bVerbose, gmx_bool bCompact,
+                int nstglobalcomm,
+                gmx_vsite_t *vsite, gmx_constr_t constr,
+                int stepout,
+                t_inputrec *inputrec,
+                gmx_mtop_t *top_global, t_fcdata *fcd,
+                t_state *state_global,
+                t_mdatoms *mdatoms,
+                t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+                gmx_edsam_t ed,
+                t_forcerec *fr,
+                int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
+                gmx_membed_t membed,
+                real cpt_period, real max_hours,
+                const char *deviceOptions,
+                unsigned long Flags,
+                gmx_runtime_t *runtime)
+{
+    const char       *SD = "Steepest Descents";
+    em_state_t       *s_min, *s_try;
+    rvec             *f_global;
+    gmx_localtop_t   *top;
+    gmx_enerdata_t   *enerd;
+    rvec             *f;
+    gmx_global_stat_t gstat;
+    t_graph          *graph;
+    real              stepsize, constepsize;
+    real              ustep, fnormn;
+    gmx_mdoutf_t     *outf;
+    t_mdebin         *mdebin;
+    gmx_bool          bDone, bAbort, do_x, do_f;
+    tensor            vir, pres;
+    rvec              mu_tot;
+    int               nsteps;
+    int               count          = 0;
+    int               steps_accepted = 0;
+    /* not used */
+    real              terminate = 0;
+
+    s_min = init_em_state();
+    s_try = init_em_state();
+
+    /* Init em and store the local state in s_try */
+    init_em(fplog, SD, cr, inputrec,
+            state_global, top_global, s_try, &top, &f, &f_global,
+            nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
+            nfile, fnm, &outf, &mdebin);
+
+    /* Print to log file  */
+    print_em_start(fplog, cr, runtime, wcycle, SD);
+
+    /* Set variables for stepsize (in nm). This is the largest
+     * step that we are going to make in any direction.
+     */
+    ustep    = inputrec->em_stepsize;
+    stepsize = 0;
+
+    /* Max number of steps  */
+    nsteps = inputrec->nsteps;
+
+    if (MASTER(cr))
+    {
+        /* Print to the screen  */
+        sp_header(stderr, SD, inputrec->em_tol, nsteps);
+    }
+    if (fplog)
+    {
+        sp_header(fplog, SD, inputrec->em_tol, nsteps);
+    }
+
+    /**** HERE STARTS THE LOOP ****
+     * count is the counter for the number of steps
+     * bDone will be TRUE when the minimization has converged
+     * bAbort will be TRUE when nsteps steps have been performed or when
+     * the stepsize becomes smaller than is reasonable for machine precision
+     */
+    count  = 0;
+    bDone  = FALSE;
+    bAbort = FALSE;
+    while (!bDone && !bAbort)
+    {
+        bAbort = (nsteps >= 0) && (count == nsteps);
+
+        /* set new coordinates, except for first step */
+        if (count > 0)
+        {
+            do_em_step(cr, inputrec, mdatoms, fr->bMolPBC,
+                       s_min, stepsize, s_min->f, s_try,
+                       constr, top, nrnb, wcycle, count);
+        }
+
+        evaluate_energy(fplog, bVerbose, cr,
+                        state_global, top_global, s_try, top,
+                        inputrec, nrnb, wcycle, gstat,
+                        vsite, constr, fcd, graph, mdatoms, fr,
+                        mu_tot, enerd, vir, pres, count, count == 0);
+
+        if (MASTER(cr))
+        {
+            print_ebin_header(fplog, count, count, s_try->s.lambda[efptFEP]);
+        }
+
+        if (count == 0)
+        {
+            s_min->epot = s_try->epot + 1;
+        }
+
+        /* Print it if necessary  */
+        if (MASTER(cr))
+        {
+            if (bVerbose)
+            {
+                fprintf(stderr, "Step=%5d, Dmax= %6.1e nm, Epot= %12.5e Fmax= %11.5e, atom= %d%c",
+                        count, ustep, s_try->epot, s_try->fmax, s_try->a_fmax+1,
+                        (s_try->epot < s_min->epot) ? '\n' : '\r');
+            }
+
+            if (s_try->epot < s_min->epot)
+            {
+                /* Store the new (lower) energies  */
+                upd_mdebin(mdebin, FALSE, FALSE, (double)count,
+                           mdatoms->tmass, enerd, &s_try->s, inputrec->fepvals, inputrec->expandedvals,
+                           s_try->s.box, NULL, NULL, vir, pres, NULL, mu_tot, constr);
+                print_ebin(outf->fp_ene, TRUE,
+                           do_per_step(steps_accepted, inputrec->nstdisreout),
+                           do_per_step(steps_accepted, inputrec->nstorireout),
+                           fplog, count, count, eprNORMAL, TRUE,
+                           mdebin, fcd, &(top_global->groups), &(inputrec->opts));
+                fflush(fplog);
+            }
+        }
+
+        /* Now if the new energy is smaller than the previous...
+         * or if this is the first step!
+         * or if we did random steps!
+         */
+
+        if ( (count == 0) || (s_try->epot < s_min->epot) )
+        {
+            steps_accepted++;
+
+            /* Test whether the convergence criterion is met...  */
+            bDone = (s_try->fmax < inputrec->em_tol);
+
+            /* Copy the arrays for force, positions and energy  */
+            /* The 'Min' array always holds the coords and forces of the minimal
+               sampled energy  */
+            swap_em_state(s_min, s_try);
+            if (count > 0)
+            {
+                ustep *= 1.2;
+            }
+
+            /* Write to trn, if necessary */
+            do_x = do_per_step(steps_accepted, inputrec->nstxout);
+            do_f = do_per_step(steps_accepted, inputrec->nstfout);
+            write_em_traj(fplog, cr, outf, do_x, do_f, NULL,
+                          top_global, inputrec, count,
+                          s_min, state_global, f_global);
+        }
+        else
+        {
+            /* If energy is not smaller make the step smaller...  */
+            ustep *= 0.5;
+
+            if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
+            {
+                /* Reload the old state */
+                em_dd_partition_system(fplog, count, cr, top_global, inputrec,
+                                       s_min, top, mdatoms, fr, vsite, constr,
+                                       nrnb, wcycle);
+            }
+        }
+
+        /* Determine new step  */
+        stepsize = ustep/s_min->fmax;
+
+        /* Check if stepsize is too small, with 1 nm as a characteristic length */
+#ifdef GMX_DOUBLE
+        if (count == nsteps || ustep < 1e-12)
+#else
+        if (count == nsteps || ustep < 1e-6)
+#endif
+        {
+            if (MASTER(cr))
+            {
+                warn_step(stderr, inputrec->em_tol, count == nsteps, constr != NULL);
+                warn_step(fplog, inputrec->em_tol, count == nsteps, constr != NULL);
+            }
+            bAbort = TRUE;
+        }
+
+        count++;
+    } /* End of the loop  */
+
+    /* Print some shit...  */
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "\nwriting lowest energy coordinates.\n");
+    }
+    write_em_traj(fplog, cr, outf, TRUE, inputrec->nstfout, ftp2fn(efSTO, nfile, fnm),
+                  top_global, inputrec, count,
+                  s_min, state_global, f_global);
+
+    fnormn = s_min->fnorm/sqrt(state_global->natoms);
+
+    if (MASTER(cr))
+    {
+        print_converged(stderr, SD, inputrec->em_tol, count, bDone, nsteps,
+                        s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
+        print_converged(fplog, SD, inputrec->em_tol, count, bDone, nsteps,
+                        s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
+    }
+
+    finish_em(fplog, cr, outf, runtime, wcycle);
+
+    /* To print the actual number of steps we needed somewhere */
+    inputrec->nsteps = count;
+
+    runtime->nsteps_done = count;
+
+    return 0;
+} /* That's all folks */
+
+
+double do_nm(FILE *fplog, t_commrec *cr,
+             int nfile, const t_filenm fnm[],
+             const output_env_t oenv, gmx_bool bVerbose, gmx_bool bCompact,
+             int nstglobalcomm,
+             gmx_vsite_t *vsite, gmx_constr_t constr,
+             int stepout,
+             t_inputrec *inputrec,
+             gmx_mtop_t *top_global, t_fcdata *fcd,
+             t_state *state_global,
+             t_mdatoms *mdatoms,
+             t_nrnb *nrnb, gmx_wallcycle_t wcycle,
+             gmx_edsam_t ed,
+             t_forcerec *fr,
+             int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
+             gmx_membed_t membed,
+             real cpt_period, real max_hours,
+             const char *deviceOptions,
+             unsigned long Flags,
+             gmx_runtime_t *runtime)
+{
+    const char          *NM = "Normal Mode Analysis";
+    gmx_mdoutf_t        *outf;
+    int                  natoms, atom, d;
+    int                  nnodes, node;
+    rvec                *f_global;
+    gmx_localtop_t      *top;
+    gmx_enerdata_t      *enerd;
+    rvec                *f;
+    gmx_global_stat_t    gstat;
+    t_graph             *graph;
+    real                 t, t0, lambda, lam0;
+    gmx_bool             bNS;
+    tensor               vir, pres;
+    rvec                 mu_tot;
+    rvec                *fneg, *dfdx;
+    gmx_bool             bSparse; /* use sparse matrix storage format */
+    size_t               sz=0;
+    gmx_sparsematrix_t * sparse_matrix           = NULL;
+    real           *     full_matrix             = NULL;
+    em_state_t       *   state_work;
+
+    /* added with respect to mdrun */
+    int        i, j, k, row, col;
+    real       der_range = 10.0*sqrt(GMX_REAL_EPS);
+    real       x_min;
+    real       fnorm, fmax;
+
+    if (constr != NULL)
+    {
+        gmx_fatal(FARGS, "Constraints present with Normal Mode Analysis, this combination is not supported");
+    }
+
+    state_work = init_em_state();
+
+    /* Init em and store the local state in state_minimum */
+    init_em(fplog, NM, cr, inputrec,
+            state_global, top_global, state_work, &top,
+            &f, &f_global,
+            nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
+            nfile, fnm, &outf, NULL);
+
+    natoms = top_global->natoms;
+    snew(fneg, natoms);
+    snew(dfdx, natoms);
+
+#ifndef GMX_DOUBLE
+    if (MASTER(cr))
+    {
+        fprintf(stderr,
+                "NOTE: This version of Gromacs has been compiled in single precision,\n"
+                "      which MIGHT not be accurate enough for normal mode analysis.\n"
+                "      Gromacs now uses sparse matrix storage, so the memory requirements\n"
+                "      are fairly modest even if you recompile in double precision.\n\n");
+    }
+#endif
+
+    /* Check if we can/should use sparse storage format.
+     *
+     * Sparse format is only useful when the Hessian itself is sparse, which it
+     * will be when we use a cutoff.
+     * For small systems (n<1000) it is easier to always use full matrix format, though.
+     */
+    if (EEL_FULL(fr->eeltype) || fr->rlist == 0.0)
+    {
+        md_print_info(cr, fplog, "Non-cutoff electrostatics used, forcing full Hessian format.\n");
+        bSparse = FALSE;
+    }
+    else if (top_global->natoms < 1000)
+    {
+        md_print_info(cr, fplog, "Small system size (N=%d), using full Hessian format.\n", top_global->natoms);
+        bSparse = FALSE;
+    }
+    else
+    {
+        md_print_info(cr, fplog, "Using compressed symmetric sparse Hessian format.\n");
+        bSparse = TRUE;
+    }
+
+    if (MASTER(cr))
+    {
+        sz = DIM*top_global->natoms;
+
+        fprintf(stderr, "Allocating Hessian memory...\n\n");
+
+        if (bSparse)
+        {
+            sparse_matrix = gmx_sparsematrix_init(sz);
+            sparse_matrix->compressed_symmetric = TRUE;
+        }
+        else
+        {
+            snew(full_matrix, sz*sz);
+        }
+    }
+
+    /* Initial values */
+    t0           = inputrec->init_t;
+    lam0         = inputrec->fepvals->init_lambda;
+    t            = t0;
+    lambda       = lam0;
+
+    init_nrnb(nrnb);
+
+    where();
+
+    /* Write start time and temperature */
+    print_em_start(fplog, cr, runtime, wcycle, NM);
+
+    /* fudge nr of steps to nr of atoms */
+    inputrec->nsteps = natoms*2;
+
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "starting normal mode calculation '%s'\n%d steps.\n\n",
+                *(top_global->name), (int)inputrec->nsteps);
+    }
+
+    nnodes = cr->nnodes;
+
+    /* Make evaluate_energy do a single node force calculation */
+    cr->nnodes = 1;
+    evaluate_energy(fplog, bVerbose, cr,
+                    state_global, top_global, state_work, top,
+                    inputrec, nrnb, wcycle, gstat,
+                    vsite, constr, fcd, graph, mdatoms, fr,
+                    mu_tot, enerd, vir, pres, -1, TRUE);
+    cr->nnodes = nnodes;
+
+    /* if forces are not small, warn user */
+    get_state_f_norm_max(cr, &(inputrec->opts), mdatoms, state_work);
+
+    md_print_info(cr, fplog, "Maximum force:%12.5e\n", state_work->fmax);
+    if (state_work->fmax > 1.0e-3)
+    {
+        md_print_info(cr, fplog,
+                      "The force is probably not small enough to "
+                      "ensure that you are at a minimum.\n"
+                      "Be aware that negative eigenvalues may occur\n"
+                      "when the resulting matrix is diagonalized.\n\n");
+    }
+
+    /***********************************************************
+     *
+     *      Loop over all pairs in matrix
+     *
+     *      do_force called twice. Once with positive and
+     *      once with negative displacement
+     *
+     ************************************************************/
+
+    /* Steps are divided one by one over the nodes */
+    for (atom = cr->nodeid; atom < natoms; atom += nnodes)
+    {
+
+        for (d = 0; d < DIM; d++)
+        {
+            x_min = state_work->s.x[atom][d];
+
+            state_work->s.x[atom][d] = x_min - der_range;
+
+            /* Make evaluate_energy do a single node force calculation */
+            cr->nnodes = 1;
+            evaluate_energy(fplog, bVerbose, cr,
+                            state_global, top_global, state_work, top,
+                            inputrec, nrnb, wcycle, gstat,
+                            vsite, constr, fcd, graph, mdatoms, fr,
+                            mu_tot, enerd, vir, pres, atom*2, FALSE);
+
+            for (i = 0; i < natoms; i++)
+            {
+                copy_rvec(state_work->f[i], fneg[i]);
+            }
+
+            state_work->s.x[atom][d] = x_min + der_range;
+
+            evaluate_energy(fplog, bVerbose, cr,
+                            state_global, top_global, state_work, top,
+                            inputrec, nrnb, wcycle, gstat,
+                            vsite, constr, fcd, graph, mdatoms, fr,
+                            mu_tot, enerd, vir, pres, atom*2+1, FALSE);
+            cr->nnodes = nnodes;
+
+            /* x is restored to original */
+            state_work->s.x[atom][d] = x_min;
+
+            for (j = 0; j < natoms; j++)
+            {
+                for (k = 0; (k < DIM); k++)
+                {
+                    dfdx[j][k] =
+                        -(state_work->f[j][k] - fneg[j][k])/(2*der_range);
+                }
+            }
+
+            if (!MASTER(cr))
+            {
+#ifdef GMX_MPI
+#ifdef GMX_DOUBLE
+#define mpi_type MPI_DOUBLE
+#else
+#define mpi_type MPI_FLOAT
+#endif
+                MPI_Send(dfdx[0], natoms*DIM, mpi_type, MASTERNODE(cr), cr->nodeid,
+                         cr->mpi_comm_mygroup);
+#endif
+            }
+            else
+            {
+                for (node = 0; (node < nnodes && atom+node < natoms); node++)
+                {
+                    if (node > 0)
+                    {
+#ifdef GMX_MPI
+                        MPI_Status stat;
+                        MPI_Recv(dfdx[0], natoms*DIM, mpi_type, node, node,
+                                 cr->mpi_comm_mygroup, &stat);
+#undef mpi_type
+#endif
+                    }
+
+                    row = (atom + node)*DIM + d;
+
+                    for (j = 0; j < natoms; j++)
+                    {
+                        for (k = 0; k < DIM; k++)
+                        {
+                            col = j*DIM + k;
+
+                            if (bSparse)
+                            {
+                                if (col >= row && dfdx[j][k] != 0.0)
+                                {
+                                    gmx_sparsematrix_increment_value(sparse_matrix,
+                                                                     row, col, dfdx[j][k]);
+                                }
+                            }
+                            else
+                            {
+                                full_matrix[row*sz+col] = dfdx[j][k];
+                            }
+                        }
+                    }
+                }
+            }
+
+            if (bVerbose && fplog)
+            {
+                fflush(fplog);
+            }
+        }
+        /* write progress */
+        if (MASTER(cr) && bVerbose)
+        {
+            fprintf(stderr, "\rFinished step %d out of %d",
+                    min(atom+nnodes, natoms), natoms);
+            fflush(stderr);
+        }
+    }
+
+    if (MASTER(cr))
+    {
+        fprintf(stderr, "\n\nWriting Hessian...\n");
+        gmx_mtxio_write(ftp2fn(efMTX, nfile, fnm), sz, sz, full_matrix, sparse_matrix);
+    }
+
+    finish_em(fplog, cr, outf, runtime, wcycle);
+
+    runtime->nsteps_done = natoms*2;
+
+    return 0;
+}