diff --git a/regtest/crystallization/rt-pamm-aperiodic/clusters.dat b/regtest/crystallization/rt-pamm-aperiodic/clusters.dat index 21c770a1ff454ff10d3329095afc00069a4c0cb3..9402d5ff064e47554baa9bf619bc788078480107 100755 --- a/regtest/crystallization/rt-pamm-aperiodic/clusters.dat +++ b/regtest/crystallization/rt-pamm-aperiodic/clusters.dat @@ -1,3 +1,5 @@ -#! FIELDS weight center-fcc width-fcc-fcc +#! FIELDS height fcc sigma_fcc_fcc +#! SET multivariate von-misses +#! SET kerneltype gaussian 4.13163724E-0001 1.44833887E-0002 2.52246630E-0002 5.86836276E-0001 8.72359830E-0001 1.71959514E-0002 diff --git a/regtest/crystallization/rt-pamm-aperiodic/plumed.dat b/regtest/crystallization/rt-pamm-aperiodic/plumed.dat index a241bed3d80e618570c8613813d2ea2cdc24adb1..7b7615778293dc052edb70eea0b3ce21c8dbc75c 100755 --- a/regtest/crystallization/rt-pamm-aperiodic/plumed.dat +++ b/regtest/crystallization/rt-pamm-aperiodic/plumed.dat @@ -1,6 +1,6 @@ FCCUBIC SPECIESA=1-2 SPECIESB=1-1200 SWITCH={CUBIC D_0=1.2 D_MAX=1.5} MEAN LABEL=fcc -PAMM DATA=fcc CLUSTERS=clusters.dat MEAN LABEL=pamm +PAMM DATA=fcc CLUSTERS=clusters.dat MEAN REGULARISE=0.0 LABEL=pamm # PAMM DATA=fcc CLUSTERS=clusters.dat MEAN NUMERICAL_DERIVATIVES LABEL=pammn PRINT ARG=pamm.* FILE=colvar FMT=%8.4f diff --git a/regtest/multicolvar/rt-pamm-periodic/2D-testc-0.75.pammp b/regtest/multicolvar/rt-pamm-periodic/2D-testc-0.75.pammp index 651fe29725a9721663ced7d8107729ea65d21057..9778b62d483ada4fdc813538ff32edd416619fc7 100755 --- a/regtest/multicolvar/rt-pamm-periodic/2D-testc-0.75.pammp +++ b/regtest/multicolvar/rt-pamm-periodic/2D-testc-0.75.pammp @@ -1,4 +1,6 @@ -#! FIELDS weight center-phi center-psi width-phi-phi width-phi-psi width-psi-phi width-psi-psi +#! FIELDS height phi psi sigma_phi_phi sigma_phi_psi sigma_psi_phi sigma_psi_psi +#! SET multivariate von-misses +#! SET kerneltype gaussian 2.97197455E-0001 -1.91983118E+0000 2.25029540E+0000 2.45960237E-0001 -1.30615381E-0001 -1.30615381E-0001 2.40239117E-0001 2.29131448E-0002 1.39809354E+0000 9.54585380E-0002 9.61755708E-0002 -3.55657919E-0002 -3.55657919E-0002 1.06147253E-0001 5.06676398E-0001 -1.09648066E+0000 -7.17867907E-0001 1.40523052E-0001 -1.05385552E-0001 -1.05385552E-0001 1.63290557E-0001 diff --git a/regtest/multicolvar/rt-pamm-periodic/plumed.dat b/regtest/multicolvar/rt-pamm-periodic/plumed.dat index 356d6a0796ac58e4b85783669f234d0c5ea8b9d3..d92e01bca8c8a137edd8ae7679ce3f7ad2ba4c5a 100755 --- a/regtest/multicolvar/rt-pamm-periodic/plumed.dat +++ b/regtest/multicolvar/rt-pamm-periodic/plumed.dat @@ -17,8 +17,8 @@ TORSIONS ... DUMPMULTICOLVAR DATA=psi FILE=psi.xyz DUMPMULTICOLVAR DATA=phi FILE=phi.xyz -PAMM DATA=phi,psi CLUSTERS=2D-testc-0.75.pammp MEAN1={COMPONENT=1} HISTOGRAM={GAUSSIAN NBINS=2 LOWER=0.0 UPPER=0.5 COMPONENT=2 SMEAR=0.1} HIGHEST={COMPONENT=4} MOMENTS1={MOMENTS=2-3 COMPONENT=1} MOMENTS2={MOMENTS=2-3 COMPONENT=5} LABEL=p -# PAMM DATA=phi,psi CLUSTERS=2D-testc-0.75.pammp MEAN1={COMPONENT=1} HISTOGRAM={GAUSSIAN NBINS=2 LOWER=0.0 UPPER=0.5 COMPONENT=2} HIGHEST={COMPONENT=4} MOMENTS1={MOMENTS=2-3 COMPONENT=1} MOMENTS2={MOMENTS=2-3 COMPONENT=5} NUMERICAL_DERIVATIVES LABEL=pn +PAMM DATA=phi,psi CLUSTERS=2D-testc-0.75.pammp MEAN1={COMPONENT=1} HISTOGRAM={GAUSSIAN NBINS=2 LOWER=0.0 UPPER=0.5 COMPONENT=2 SMEAR=0.1} HIGHEST={COMPONENT=4} MOMENTS1={MOMENTS=2-3 COMPONENT=1} MOMENTS2={MOMENTS=2-3 COMPONENT=5} REGULARISE=0.0 LABEL=p +# PAMM DATA=phi,psi CLUSTERS=2D-testc-0.75.pammp MEAN1={COMPONENT=1} HISTOGRAM={GAUSSIAN NBINS=2 LOWER=0.0 UPPER=0.5 COMPONENT=2} HIGHEST={COMPONENT=4} MOMENTS1={MOMENTS=2-3 COMPONENT=1} MOMENTS2={MOMENTS=2-3 COMPONENT=5} NUMERICAL_DERIVATIVES REGULARISE=0.0 LABEL=pn PRINT ARG=p.* FILE=colvar FMT=%8.4f DUMPDERIVATIVES ARG=p.* FILE=deriv FMT=%8.4f diff --git a/src/multicolvar/PAMM.cpp b/src/multicolvar/PAMM.cpp index 700057fe5167c4426384449185d0b542d28214db..ca43717f3e6138e6524ca5dbb30fde8c2c33e81c 100644 --- a/src/multicolvar/PAMM.cpp +++ b/src/multicolvar/PAMM.cpp @@ -68,13 +68,15 @@ PRINT ARG=p.mean-1,mean-2 FILE=colvar The best place to start our explanation is to look at the contents of the clusters.dat file \verbatim -#! FIELDS weight center-phi center-psi width-phi-phi width-phi-psi width-psi-phi width-psi-psi +#! FIELDS height phi psi sigma_phi_phi sigma_phi_psi sigma_psi_phi sigma_psi_psi +#! SET multivariate von-misses +#! SET kerneltype gaussian 0.4 -1.0 -1.0 0.2 -0.1 -0.1 0.2 0.6 1.0 +1.0 0.1 -0.03 -0.03 0.1 \endverbatim This files contains the parameters of two two-dimensional Gaussian functions. Each of these Gaussians has a weight, \f$w_k\f$, -a vector that specifies the position of its centre, \f$\mathbf{c}_\f$, and a covariance matrix, \f$\Sigma_k\f$. The \f$\phi_k\f$ functions that +a vector that specifies the position of its centre, \f$\mathbf{c}_k\f$, and a covariance matrix, \f$\Sigma_k\f$. The \f$\phi_k\f$ functions that we use to calculate our PAMM components are thus: \f[ @@ -107,7 +109,7 @@ namespace multicolvar { class PAMM : public MultiColvarFunction { private: double regulariser; - std::vector<KernelFunctions> kernels; + std::vector<KernelFunctions*> kernels; std::vector<Value*> pos; public: static void registerKeywords( Keywords& keys ); @@ -171,49 +173,33 @@ MultiColvarFunction(ao) pos[i]->setDomain( min, max ); } } + + // Get labels for base multicolvars + std::vector<std::string> valnames( getNumberOfBaseMultiColvars() ); + for(unsigned i=0;i<valnames.size();++i) valnames[i]=getBaseMultiColvar(i)->getLabel(); - std::string filename; parse("CLUSTERS",filename); - unsigned ncolv = getNumberOfBaseMultiColvars(); - IFile ifile; Matrix<double> covar( ncolv, ncolv ), icovar( ncolv, ncolv ); + std::string filename; parse("CLUSTERS",filename); IFile ifile; if( !ifile.FileExist(filename) ) error("could not find file named " + filename); - ifile.open(filename); ifile.allowIgnoredFields(); double weight, wij; - std::vector<double> center( ncolv ); - std::vector<double> sig( 0.5*ncolv*(ncolv-1) + ncolv ); - while( ifile.scanField("weight",weight) ) { - for(unsigned i=0;i<center.size();++i){ - ifile.scanField("center-"+getBaseMultiColvar(i)->getLabel(),center[i]); - } - for(unsigned i=0;i<center.size();++i){ - for(unsigned j=0;j<center.size();++j){ - ifile.scanField("width-"+getBaseMultiColvar(i)->getLabel()+"-" + getBaseMultiColvar(j)->getLabel(),covar(i,j) ); - } - } - Invert( covar, icovar ); - unsigned k=0; - for(unsigned i=0;i<ncolv;i++){ - for(unsigned j=i;j<ncolv;j++){ sig[k]=icovar(i,j); k++; } - } + ifile.open(filename); ifile.allowIgnoredFields(); + + for(unsigned i=0;;++i){ + KernelFunctions* kk = KernelFunctions::read( &ifile, false, valnames ); + if( !kk ) break ; + kk->normalize( pos ); + kernels.push_back( kk ); ifile.scanField(); - kernels.push_back( KernelFunctions( center, sig, "GAUSSIAN", "VON-MISES", weight ) ); - kernels[kernels.size()-1].normalize( pos ); } ifile.close(); // This builds the lists buildSets(); - - // I think we can put this back for anything with not usespecies - // Now need to pass cutoff information to underlying distance multicolvars - // for(unsigned i=0;i<getNumberOfBaseMultiColvars();++i){ - // Distances* mydist = dynamic_cast<Distances*>( getBaseMultiColvar(i) ); - // for(unsigned k=0;k<kernels.size();++k){ - // mydist->setLinkCellCutoff( kernels[k].getCenter()[i]+kernels[k].getContinuousSupport()[i] ); - // } - // } + // Read the regularisation parameter + parse("REGULARISE",regulariser); } PAMM::~PAMM(){ for(unsigned i=0;i<pos.size();++i) delete pos[i]; + for(unsigned i=0;i<kernels.size();++i) delete kernels[i]; } unsigned PAMM::getNumberOfQuantities(){ @@ -258,7 +244,7 @@ double PAMM::compute( const unsigned& tindex, AtomValuePack& myatoms ) const { // Evaluate the set of kernels double denom=regulariser; for(unsigned i=0;i<kernels.size();++i){ - vals[i]=kernels[i].evaluate( pos, tderiv[i] ); + vals[i]=kernels[i]->evaluate( pos, tderiv[i] ); denom+=vals[i]; for(unsigned j=0;j<nvars;++j) dderiv[j] += tderiv[i][j]; }