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¿e struggle itself toward the heights
is enough to �ll a man’s heart.

One must imagine Sisyphus happy.

—Albert Camus, ¿e Myth of Sisyphus
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1INTRODUCTION
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2STATE OF THE ART

2.1 preliminaries

¿is section introduces the notation which will be used in the rest of
this chapter. ¿e exposition of propositional logic is mainly based on the
work of Nieuwenhuis et al. [NOT06]. ¿e exposition of �rst-order logic
is partly based on the same source, but the de�nition of �rst-order theory
is di�erent. In particular, instead of de�ning theory as a set of �rst-order
sentences, the theory will be de�ned as a set of �rst-order structures, as
this de�nition is more suitable for the bit-vector theory, which will be
introduced in the later parts of this chapter.

2.1.1 Propositional formulas, assignments, and satisfaction

Let P be a �xed �nite set of propositional variables. For every variable
x ∈ P there are two literals – a positive literal x and a negative literal
x. For a given literal l, we de�ne ¬l as l if l is positive and as l if l is
negative. Literals l and ¬l are called complementary. A clause is a �nite
disjunction of of literals. ¿e empty clause is denoted by ⊥. A formula
in the conjunctive normal form (cnf) is a �nite conjunction of clauses. If
convinient, we will use idempotence and commutativity of disjunction
and view clauses as sets of literals and therefore ignore the order and
multiple occurences of literals. Similarly, if convinient, we will view cnf
formulas as sets of clauses.
A partial assignmentM is a set of literals which does not contain com-

plementary literals, i.e. {x, x} ⊆M for no x ∈ P. A literal l is true in the
assignmentM if l ∈M, false inM if ¬l ∈M, and unde�ned otherwise.
A literal is de�ned inM if it is true or false inM. We call an asignmentM
total over P if all literals of P are de�ned inM. A clause is true inM if at
least one of its literals is true inM and a cnf formula is true inM if all of
its clauses are true inM. Clause that is false for a given assignmentM is
called a con�ict clause forM. For a clause C = x1 ∨ . . . xn, the notation
¬C stands for the formula ¬x1 ∧ . . .∧ xn.
If a formula F is true inM, we callM amodel of F and denote it asM |=

F. A formula is satis�able if it has a model and unsatis�able otherwise.
If every model of a formula F is also a model of a formula F ′, we say
that the formula F ′ is entailed by the formula F and denote it as F |= F ′.
Formulas F and F ′ are called equisatis�able if F is satis�able precisely if F ′
is satis�able.

3
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4 state of the art

2.1.2 First-order formulas and theories

2.2 propositional satisfiability

A propositional statis�ability problem (sat) is for a given formula F in cnf
decide wheter it is satis�able.¿e restriction to formulas in cnf is without
a loss of generality, as Tseitin transformation can be used to transform
every formula to a equisatis�able formula in cnf with only linear increase
of its size [Tse68].

2.2.1 DPLL

Historically, the �rst procedure to solve sat without explicitly computing
the truth table of the formula was proposed by Davis and Putnam [DP60].
During the Davis–Putnam procedure (dp) the propositional variables
of the input formula are successively eliminated using the resolution
inference rule [Rob65]. If the resolution yields the empty clause, the
formula is unsatis�able; on the other hand, if a er ellimination of all
variables no clauses remain, the formula is satis�able. ¿e main problem
of dp is its space complexity as the number of the clauses may grow
exponentially even for simple formulas. To alleviate this problem, the
re�nement of dp algorithm was introduced in 1962 by Davis, Putnam,
Logemann and Loveland [DLL62].
Davis–Putnam–Logemann–Loveland algorithm (dpll) iterativelly tries

to build a satisfying assignment by searching and it backtracks if any of
the input clauses becomes false in the current assignment. ¿e search of
dpll is guided by the unit propagation (also known as boolean constraint
propagation), which is based on the observation that given a clause C∨ l

in which all literals of C are false in the current assignmentM and the
literal l is unde�ned, the only way to build a satisfying asignment is to
add the literal l toM.
As observed by Nieuwenhuis et al. [NOT06], the dpll algorithm can

be presented as a transition system. In this system, the states are Fail and
pairsM || F, where F is a cnf formula andM is a sequence of literals, each
marked as decision or non-decision literal. Decision literals are denoted
as l• and intuitively correspond to literals whose value was set arbitrarily
during the search, and hence their value can be changed to ¬l during
backtracking if necessary. We will denote a concatenation of sequencesM
andN by a simple juxtapositionMN and we will treat literals as sequence
of length 1. A transition systems further contains a transition relation
=⇒, which is a binary relation over the set of states. Instead of writing
(s, t) ∈=⇒, we will write simply s =⇒ t. ¿e re�exive and transitive
closure of the relation⇒ will be denoted as⇒∗. ¿e transition relation
for the dpll transition system is given by the following set of rules:
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2.2 propositional satisfiability 5

UnitPropagate

M || F, C∨ l =⇒Ml || F, C∨ l if

M |= ¬C

l is unde�ned in M

PureLiteral

M || F =⇒Ml || F if


l occurs in F

¬l does not occur in F

l is unde�ned in M

Decide

M || F =⇒Ml• || F if

l or ¬l occurs in F

l is unde�ned in M

Fail

M || F, C =⇒ Fail if

M |= ¬C

M contains no decision literals

Backtrack

Ml•N || F, C =⇒M¬l || F, C if

Ml•N |= ¬C

N contains no decision literals

A state s is called �nal if there is no state t such that s =⇒ t. It can
be shown that if F is a formula and Sf an arbitrary �nal state such that
∅ || F =⇒∗ Sf, then F is unsatis�able precisely if Sf = Fail. Moreover, if
Sf = M || F, thenM is a model of the formula F [NOT06].
Note that the used backtracking strategy is chronological, i.e. the value

of the last decision made is changed.

2.2.2 CDCL

Although the dpll algorithm is more e�cient than the original dp algo-
rithm, it may unnecessarily explore parts of the search space that contain
no solution. ¿is problem can be partly solved by a further re�nement of
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6 state of the art

dpll algorithm called Con�ict-Driven Clause Learning (cdcl), which
was proposed by Marques-Silva and Sakallah [MSS99] and is a base of
almost all modern sat solvers [KSMS11]. In addition to dpll, cdcl based
sat solvers have mechanisms to analyze a con�ict and learn a new clause
from a con�icting assignment. Moreover, in contrast to a chronological
backtracking, in which the value of the most recent decision is changed,
cdcl solvers can perform non-chronological backtracking to an earlier
decision literal.

2.3 satisfiability modulo theories

2.4 satisfiability of quantifier-free bit-vector formulas

2.5 satisfiability of quantified bit-vector formulas

2.6 computational complexity
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3AIM OF THE WORK

3.1 objectives and expected results

3.2 expected outputs

3.3 progression schedule
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