
SMT SOLVING BIT-VECTOR FORMULAS

martin jonáš

PhD¿esis Proposal

September 2016

[August 3, 2016 at 10:51 – classicthesis]

Martin Jonáš: SMT Solving Bit-Vector Formulas, PhD¿esis Proposal, ©
September 2016

[August 3, 2016 at 10:51 – classicthesis]

¿e struggle itself toward the heights
is enough to �ll a man’s heart.

One must imagine Sisyphus happy.

—Albert Camus, ¿e Myth of Sisyphus

ACKNOWLEDGMENTS

I would like to thank to ...

iii

[August 3, 2016 at 10:51 – classicthesis]

[August 3, 2016 at 10:51 – classicthesis]

CONTENTS

1 introduction 1

2 state of the art 3
2.1 Preliminaries . 3

2.1.1 Propositional formulas, assignments, and satis-
faction . 3

2.1.2 First-order formulas and theories 4
2.2 Propositional satis�ability 4

2.2.1 DPLL . 4
2.2.2 CDCL . 5

2.3 Satis�ability modulo theories 6
2.4 Satis�ability of quanti�er-free bit-vector formulas 6
2.5 Satis�ability of quanti�ed bit-vector formulas 6
2.6 Computational complexity 6

3 aim of the work 7
3.1 Objectives and Expected Results 7
3.2 Expected Outputs . 7
3.3 Progression Schedule . 7

bibliography 9

a appendix 11

v

[August 3, 2016 at 10:51 – classicthesis]

[August 3, 2016 at 10:51 – classicthesis]

1INTRODUCTION

1

[August 3, 2016 at 10:51 – classicthesis]

[August 3, 2016 at 10:51 – classicthesis]

2STATE OF THE ART

2.1 preliminaries

¿is section introduces the notation which will be used in the rest of
this chapter. ¿e exposition of propositional logic is mainly based on the
work of Nieuwenhuis et al. [NOT06]. ¿e exposition of �rst-order logic
is partly based on the same source, but the de�nition of �rst-order theory
is di�erent. In particular, instead of de�ning theory as a set of �rst-order
sentences, the theory will be de�ned as a set of �rst-order structures, as
this de�nition is more suitable for the bit-vector theory, which will be
introduced in the later parts of this chapter.

2.1.1 Propositional formulas, assignments, and satisfaction

Let P be a �xed �nite set of propositional variables. For every variable
x ∈ P there are two literals – a positive literal x and a negative literal
x. For a given literal l, we de�ne ¬l as l if l is positive and as l if l is
negative. Literals l and ¬l are called complementary. A clause is a �nite
disjunction of of literals. ¿e empty clause is denoted by ⊥. A formula
in the conjunctive normal form (cnf) is a �nite conjunction of clauses. If
convinient, we will use idempotence and commutativity of disjunction
and view clauses as sets of literals and therefore ignore the order and
multiple occurences of literals. Similarly, if convinient, we will view cnf
formulas as sets of clauses.
A partial assignmentM is a set of literals which does not contain com-

plementary literals, i.e. {x, x} ⊆M for no x ∈ P. A literal l is true in the
assignmentM if l ∈M, false inM if ¬l ∈M, and unde�ned otherwise.
A literal is de�ned inM if it is true or false inM. We call an asignmentM
total over P if all literals of P are de�ned inM. A clause is true inM if at
least one of its literals is true inM and a cnf formula is true inM if all of
its clauses are true inM. Clause that is false for a given assignmentM is
called a con�ict clause forM. For a clause C = x1 ∨ . . . xn, the notation
¬C stands for the formula ¬x1 ∧ . . .∧ xn.
If a formula F is true inM, we callM amodel of F and denote it asM |=

F. A formula is satis�able if it has a model and unsatis�able otherwise.
If every model of a formula F is also a model of a formula F ′, we say
that the formula F ′ is entailed by the formula F and denote it as F |= F ′.
Formulas F and F ′ are called equisatis�able if F is satis�able precisely if F ′
is satis�able.

3

[August 3, 2016 at 10:51 – classicthesis]

4 state of the art

2.1.2 First-order formulas and theories

2.2 propositional satisfiability

A propositional statis�ability problem (sat) is for a given formula F in cnf
decide wheter it is satis�able.¿e restriction to formulas in cnf is without
a loss of generality, as Tseitin transformation can be used to transform
every formula to a equisatis�able formula in cnf with only linear increase
of its size [Tse68].

2.2.1 DPLL

Historically, the �rst procedure to solve sat without explicitly computing
the truth table of the formula was proposed by Davis and Putnam [DP60].
During the Davis–Putnam procedure (dp) the propositional variables
of the input formula are successively eliminated using the resolution
inference rule [Rob65]. If the resolution yields the empty clause, the
formula is unsatis�able; on the other hand, if a er ellimination of all
variables no clauses remain, the formula is satis�able. ¿e main problem
of dp is its space complexity as the number of the clauses may grow
exponentially even for simple formulas. To alleviate this problem, the
re�nement of dp algorithm was introduced in 1962 by Davis, Putnam,
Logemann and Loveland [DLL62].
Davis–Putnam–Logemann–Loveland algorithm (dpll) iterativelly tries

to build a satisfying assignment by searching and it backtracks if any of
the input clauses becomes false in the current assignment. ¿e search of
dpll is guided by the unit propagation (also known as boolean constraint
propagation), which is based on the observation that given a clause C∨ l

in which all literals of C are false in the current assignmentM and the
literal l is unde�ned, the only way to build a satisfying asignment is to
add the literal l toM.
As observed by Nieuwenhuis et al. [NOT06], the dpll algorithm can

be presented as a transition system. In this system, the states are Fail and
pairsM || F, where F is a cnf formula andM is a sequence of literals, each
marked as decision or non-decision literal. Decision literals are denoted
as l• and intuitively correspond to literals whose value was set arbitrarily
during the search, and hence their value can be changed to ¬l during
backtracking if necessary. We will denote a concatenation of sequencesM
andN by a simple juxtapositionMN and we will treat literals as sequence
of length 1. A transition systems further contains a transition relation
=⇒, which is a binary relation over the set of states. Instead of writing
(s, t) ∈=⇒, we will write simply s =⇒ t. ¿e re�exive and transitive
closure of the relation⇒ will be denoted as⇒∗. ¿e transition relation
for the dpll transition system is given by the following set of rules:

[August 3, 2016 at 10:51 – classicthesis]

2.2 propositional satisfiability 5

UnitPropagate

M || F, C∨ l =⇒Ml || F, C∨ l if

M |= ¬C

l is unde�ned in M

PureLiteral

M || F =⇒Ml || F if


l occurs in F

¬l does not occur in F

l is unde�ned in M

Decide

M || F =⇒Ml• || F if

l or ¬l occurs in F

l is unde�ned in M

Fail

M || F, C =⇒ Fail if

M |= ¬C

M contains no decision literals

Backtrack

Ml•N || F, C =⇒M¬l || F, C if

Ml•N |= ¬C

N contains no decision literals

A state s is called �nal if there is no state t such that s =⇒ t. It can
be shown that if F is a formula and Sf an arbitrary �nal state such that
∅ || F =⇒∗ Sf, then F is unsatis�able precisely if Sf = Fail. Moreover, if
Sf = M || F, thenM is a model of the formula F [NOT06].
Note that the used backtracking strategy is chronological, i.e. the value

of the last decision made is changed.

2.2.2 CDCL

Although the dpll algorithm is more e�cient than the original dp algo-
rithm, it may unnecessarily explore parts of the search space that contain
no solution. ¿is problem can be partly solved by a further re�nement of

[August 3, 2016 at 10:51 – classicthesis]

6 state of the art

dpll algorithm called Con�ict-Driven Clause Learning (cdcl), which
was proposed by Marques-Silva and Sakallah [MSS99] and is a base of
almost all modern sat solvers [KSMS11]. In addition to dpll, cdcl based
sat solvers have mechanisms to analyze a con�ict and learn a new clause
from a con�icting assignment. Moreover, in contrast to a chronological
backtracking, in which the value of the most recent decision is changed,
cdcl solvers can perform non-chronological backtracking to an earlier
decision literal.

2.3 satisfiability modulo theories

2.4 satisfiability of quantifier-free bit-vector formulas

2.5 satisfiability of quantified bit-vector formulas

2.6 computational complexity

[August 3, 2016 at 10:51 – classicthesis]

3AIM OF THE WORK

3.1 objectives and expected results

3.2 expected outputs

3.3 progression schedule

7

[August 3, 2016 at 10:51 – classicthesis]

[August 3, 2016 at 10:51 – classicthesis]

BIBLIOGRAPHY

[DLL62] Davis, M., G. Logemann, andD.W. Loveland. “Amachine
program for theorem-proving.” In:Commun. ACM 5.7 (1962),
pp. 394–397.

[DP60] Davis, M. and H. Putnam. “A Computing Procedure for
Quanti�cation¿eory.” In: J. ACM 7.3 (1960), pp. 201–215.

[KSMS11] Katebi, H., K. A. Sakallah, and J. P. Marques-Silva. “Em-
pirical Study of the Anatomy of Modern Sat Solvers.” In:
¿eory and Applications of Satis�ability Testing - SAT 2011
- 14th International Conference, SAT 2011, Ann Arbor, MI,
USA, June 19-22, 2011. Proceedings. 2011, pp. 343–356.

[MSS99] Marques-Silva, J. P. andK.A. Sakallah. “GRASP:A Search
Algorithm for Propositional Satis�ability.” In: IEEE Trans.
Computers 48.5 (1999), pp. 506–521.

[NOT06] Nieuwenhuis, R., A. Oliveras, and C. Tinelli. “Solving
SAT and SAT Modulo ¿eories: From an abstract Davis–
Putnam–Logemann–Loveland procedure to DPLL(T).” In: J.
ACM 53.6 (2006), pp. 937–977.

[Rob65] Robinson, J. A. “A Machine-Oriented Logic Based on the
Resolution Principle.” In: J. ACM 12.1 (1965), pp. 23–41.

[Tse68] Tseitin, G. S. “On the complexity of derivations in the propo-
sitional calculus.” In: Studies in Mathematics and Mathemat-
ical Logic Part II (1968), pp. 115–125.

9

[August 3, 2016 at 10:51 – classicthesis]

[August 3, 2016 at 10:51 – classicthesis]

AAPPENDIX

11

[August 3, 2016 at 10:51 – classicthesis]

	Acknowledgments
	Contents
	1 Introduction
	2 State of the Art
	2.1 Preliminaries
	2.1.1 Propositional formulas, assignments, and satisfaction
	2.1.2 First-order formulas and theories

	2.2 Propositional satisfiability
	2.2.1 DPLL
	2.2.2 CDCL

	2.3 Satisfiability modulo theories
	2.4 Satisfiability of quantifier-free bit-vector formulas
	2.5 Satisfiability of quantified bit-vector formulas
	2.6 Computational complexity

	3 Aim of the Work
	3.1 Objectives and Expected Results
	3.2 Expected Outputs
	3.3 Progression Schedule

	Bibliography
	A Appendix

