
Theory Refinement in HiFrog

Seminar on Concurrency, 13. 10. 2017



HiFrog



HiFrog

• Bounded Model Checker for safety properties
• Uses function summaries to speed-up verification
• Summaries are stored in a database for future runs
• Uses SMT for encoding programs and function summaries

1 / 16



SMT Theories

These quantifier-free theories can be used for encoding programs:

• Unintepreted functions
• Linear real arithmetic
• Propositional logic (bit-vectors)
• Uninterpreted functions for programs
• Bit-vectors for programs

2 / 16



Program Encoding

Given an assertion:

1. Loops in the program are unwound
2. Program is symbolically executed function-per-function
3. The result is a SSA representation of each involved function

x0 = nondet_a
y0 = x0 + nondet_b
x1 = y0

z0 = ...

3 / 16



Program Encoding

Given an assertion:

1. Loops in the program are unwound
2. Program is symbolically executed function-per-function
3. The result is a SSA representation of each involved function

x0 = nondet_a
y0 = x0 + nondet_b
x1 = y0

z0 = ...

3 / 16



Program Encoding (cont.)

Given an assertion:

4. SSA representation is sliced w.r.t the given assertion
5. Pruned SSA is transformed into a SMT formula, using

summaries instead functions where possible

x0 = a
y0 = x0 + b
x1 = y0

z0 = ...

(x0 = a) ∧
(y0 = (x0 + b)) ∧
(x1 = x1) ∧
(z0 = ...) ∧ ...

4 / 16



Program Encoding (cont.)

Given an assertion:

4. SSA representation is sliced w.r.t the given assertion
5. Pruned SSA is transformed into a SMT formula, using

summaries instead functions where possible

x0 = a
y0 = x0 + b
x1 = y0

z0 = ...

(x0 = a) ∧
(y0 = (x0 + b)) ∧
(x1 = x1) ∧
(z0 = ...) ∧ ...

4 / 16



Function Summaries

• Assertions are verified one-by-one
• Interpolants derived from successfully verified assertions are

stored as summaries
• Summaries are generally an over-approximation → spurious

errors
• Summaries involved in a spurious error are refined (using

interpolation) and replaced

5 / 16



Theory Refinement



Function Summaries

• Summaries are refined up to a pre-determined logic
• If the logic is insufficient, we need to change the logic
• Idea: change logic not only in summaries, but on-demand in

any part of SMT formula representing the program

6 / 16



Theory Refinement

• Use the simplest theory as possible for program encoding
• On spurious error, refine parts of programs that need more

precise theory
• Needed theories are identified based on counter-examples

(CEGAR)

7 / 16



Theory Refinement – Idea

• Use the simplest theory as possible for program encoding
• On spurious error, refine parts of programs that need more

precise theory
• Needed theories are identified based on counter-examples

(CEGAR)

8 / 16



Theory Refinement – Practice

• Set of theories partially ordered w.r.t their precision
• Needs support in SMT solver
• In HiFrog – two new theories:

• uninterpreted functions for programs (UFP)
• bit-vectors for programs (BVP)

9 / 16



Uninterpreted Functions for Programs

• Based on theory of quantifier free uninterpreted functions with
equality

• Adds integer and real constants
• Adds commutativity of some known functions (∗, +, &, ...)
• Terms encoded in UFP are indexed by u, e.g.: tu

10 / 16



Bit-vectors for Programs

• Based on theory of quantifier free bit-vectors
• We denote bi the ith bit of bitvector b, b1 being the least

significant bit.
• Terms encoded in BVP are indexed by b, e.g.: tb

11 / 16



Combining UFP and BVP

• For a term t we say that it is bound in formula F , if both tu

and tb are present in F .

c = ((a % 2) +
(b % 2)) % 2

c’ = (a + b) % 2
d = f * e * c
d’ = e * f * c’

(cb = ((ab % 2b)
+ (bb % 2b)) % 2b) ∧

(c’b = (ab + bb) % 2b) ∧
(du = fu * eu * cu) ∧
(d’u = eu * fu * c’u)

12 / 16



Combining UFP and BVP

• For a term t we say that it is bound in formula F , if both tu

and tb are present in F .

c = ((a % 2) +
(b % 2)) % 2

c’ = (a + b) % 2
d = f * e * c
d’ = e * f * c’

(cb = ((ab % 2b)
+ (bb % 2b)) % 2b) ∧

(c’b = (ab + bb) % 2b) ∧
(du = fu * eu * cu) ∧
(d’u = eu * fu * c’u)

12 / 16



Combining UFP and BVP (cont.)

• Given a set of all bound statements from a formula F , we
define the binding formula FB as follows:

FB =
∧

t,t′∈B
(tu = t ′u)↔ ((tb

1 ↔ t ′
1

b) ∧ · · · ∧ (tb
n ↔ t ′

n
b))

where n is the bitwidth of t.
• Use F ∧ FB when mixing theories

13 / 16



Combining UFP and BVP (cont.)

c = ((a % 2) +
(b % 2)) % 2

c’ = (a + b) % 2
d = f * e * c
d’ = e * f * c’

(cb = ((ab % 2b)
+ (bb % 2b)) % 2b) ∧

(c’b = (ab + bb) % 2b) ∧
(du = fu * eu * cu) ∧
(d’u = eu * fu * c’u) ∧

(cu = c’u ↔
((cb

1 ↔c’b
1) ∧

· · ·
∧ (cb

n ↔c’b
n)))

14 / 16



Combining UFP and BVP (cont.)

c = ((a % 2) +
(b % 2)) % 2

c’ = (a + b) % 2
d = f * e * c
d’ = e * f * c’

(cb = ((ab % 2b)
+ (bb % 2b)) % 2b) ∧

(c’b = (ab + bb) % 2b) ∧
(du = fu * eu * cu) ∧
(d’u = eu * fu * c’u) ∧

(cu = c’u ↔
((cb

1 ↔c’b
1) ∧

· · ·
∧ (cb

n ↔c’b
n)))

14 / 16



Counter-Example-Guided Theory Refinement

1. Encode program in UFP (get formula F ), set FB = >
2. If F ∧ FB is unsat, return safe, else get counter-example CE b

3. Take first/some/subset of/every clause c from F which is
encoded in UFP and if cb ∧ CE b is unsat, refine cu to cb,
update FB and goto 2

4. If F is all in BVP, return unsafe

15 / 16



Experiments

In the paper ;)

16 / 16


	HiFrog
	Theory Refinement

