SYMBIOTIC 4

BEYOND REACHABILITY

Marek Chalupa, Martin Jonas, Jiri Slaby,

Jan Strejcek, and Martina Vitovska

Masaryk University, Brno



PROGRAM
SLICING

[INSTRUMENTATION]

SYMBOLIC
EXECUTION




PROGRAM
SLICING
SYMBOLIC
EXECUTION

. Instrumentation
1
1

i Make memory symbolic.

E Define __VERIFIER_* functions.

! .
: Insert runtime error checks.

_________________________



SYMBOLIC
EXECUTION

'Program Slicing

' Keep only the statements that can have
' some effect on the inserted checks. |




' Symbolic execution

Explore all execution paths
in the sliced program to decide
 whether an error is reachable.

I
I
I
7



SOURCE

INSTRUMENTATION

Y
PROGRAM
SLICING

Y
SYMBOLIC
EXECUTION
(klee)




SOURCE

vy BRAND NEW
Y G INSTRUMENTATION
PROGRAM
SLICING

Y
SYMBOLIC
EXECUTION
) (klee)




New Instrumentation

» flexible — instrumentation rules in JSON

> a rule consists of
> a pattern
> a code to insert
» a condition — checked by a query to a static analysis

-
"find " |
{

1 n,

"instruction "store ",
"operands”: ["<x>", "<p>"]

}
"insert”: ["__INSTR_check_pointer”, "<p>"],
"where”: "before”,
"condition": ["lisValidPointer”, "<p>"],




New Instrumentation — Example

"find ": [
- e truction”: "store”
. Instruction N store ,
int array [10] ' "operands”: ["<x>", "<p>"]
}
I
"insert”: ["-_INSTR_check-pointer”, "<p>"],
"where": "before”,

"condition”: ["lisValidPointer”, "<p>"],

array [3] = 1;

n = input();

array[n] = n;



New Instrumentation — Example

"find ": [
{
"instruction”: "store”,
"operands”: ["<x>", "<p>"]

int array[10];

1,
"insert”: ["-_INSTR_check-pointer”, "<p>"],
"where": "before”,
"condition”: ["lisValidPointer”, "<p>"],

analysis

n = input();
__INSTR_check_pointer(&array|[n]);
array[n] = n;



New Instrumentation

__INSTR_check_* functions are

» implemented in C

» compiled to LLVM and linked to the program



SV-COMP 2017 Results - MemSafety

tool score CPU time [h] solved tasks
1 PREDATORHP 319 0.82 219
UAUTOMIZER 308 1.9 145

3 SYMBIOTIC 304 0.08 233



Conclusion

» Combining instrumentation (runtime checks) with static
analysis is easy but powerful technique

» Program slicing can further improve the performance

» This approach is competitive with state-of-the-art tools for
checking memory safety


https://github.com/staticafi/symbiotic

Conclusion

» Combining instrumentation (runtime checks) with static
analysis is easy but powerful technique

» Program slicing can further improve the performance

» This approach is competitive with state-of-the-art tools for
checking memory safety

https://github.com/staticafi/symbiotic


https://github.com/staticafi/symbiotic

