Theory Refinement in HiFrog

Seminar on Concurrency, 13. 10. 2017



HiFrog



Bounded Model Checker for safety properties

Uses function summaries to speed-up verification

e Summaries are stored in a database for future runs

Uses SMT for encoding programs and function summaries



SMT Theories

These quantifier-free theories can be used for encoding programs:

e Unintepreted functions

e Linear real arithmetic

Propositional logic (bit-vectors)

Uninterpreted functions for programs

Bit-vectors for programs

N

16



Program Encoding

Given an assertion:

1. Loops in the program are unwound
2. Program is symbolically executed function-per-function

3. The result is a SSA representation of each involved function



Program Encoding

Given an assertion:

1. Loops in the program are unwound
2. Program is symbolically executed function-per-function

3. The result is a SSA representation of each involved function

Xo = nondet_a

yo = Xo + nondet_b
X1 = Yo

zg =



Program Encoding (cont.)

Given an assertion:

4. SSA representation is sliced w.r.t the given assertion

5. Pruned SSA is transformed into a SMT formula, using
summaries instead functions where possible



Program Encoding (cont.)

Given an assertion:

4. SSA representation is sliced w.r.t the given assertion

5. Pruned SSA is transformed into a SMT formula, using
summaries instead functions where possible

Xg = a (xg = a) A
yo = X + b (yo = (x0 + D)) A
X1 = Yo (x1 = x1) A
Zo = ... (zg = ...) N ...



Function Summaries

e Assertions are verified one-by-one

e Interpolants derived from successfully verified assertions are
stored as summaries

e Summaries are generally an over-approximation — spurious
errors

e Summaries involved in a spurious error are refined (using
interpolation) and replaced



Theory Refinement




Function Summaries

e Summaries are refined up to a pre-determined logic
e If the logic is insufficient, we need to change the logic

e |dea: change logic not only in summaries, but on-demand in
any part of SMT formula representing the program



Theory Refinement

e Use the simplest theory as possible for program encoding
e On spurious error, refine parts of programs that need more
precise theory

e Needed theories are identified based on counter-examples
(CEGAR)



Theory Refinement — Idea

e Use the simplest theory as possible for program encoding

e On spurious error, refine parts of programs that need more
precise theory

e Needed theories are identified based on counter-examples
(CEGAR)

16

(o6}



Theory Refinement — Practice

e Set of theories partially ordered w.r.t their precision

e Needs support in SMT solver
e In HiFrog — two new theories:

e uninterpreted functions for programs (UFP)
e bit-vectors for programs (BVP)



Uninterpreted Functions for Programs

Based on theory of quantifier free uninterpreted functions with

equality

Adds integer and real constants

Adds commutativity of some known functions (x, +, &, ...)

Terms encoded in UFP are indexed by u, e.g.: t

10/16



Bit-vectors for Programs

e Based on theory of quantifier free bit-vectors
e We denote b; the ith bit of bitvector b, b; being the least
significant bit.

e Terms encoded in BVP are indexed by b, e.g.: t°

11/16



Combining UFP and BVP

e For a term t we say that it is bound in formula F, if both t¥

and t? are present in F.



Combining UFP and BVP

e For a term t we say that it is bound in formula F, if both t¥

and t? are present in F.

c=((a%h 2)+ (cP = (@ % 2

(b %2)) %2 + (b2 % 2P)) % 2Py A
c’=(a+b) %2 (c’b = (a® + vP) % 2b) A
d=f *xe *xc @ = f% * e x c) A
d> = e x f x ¢’ (@Y = e *x f¥ x c’4)



Combining UFP and BVP (cont.)

e Given a set of all bound statements from a formula F, we

define the binding formula Fg as follows:

Fe= J\ (t"=t") o ((tf < 8°) A A () < 10)
t,t'eB

where n is the bitwidth of t.

e Use F A Fg when mixing theories

13 /16



Combining UFP and BVP (cont.)

(c? = ((a® % 2%

+ (b2 % 2P)) % 25) A
(c’b = (aP + bP) % 2b) A
(@Y = fY * e *x c) A
(A’ = e x f¥ x c’¥) A

c=(((a%2 +

(b % 2)) %2
c’=(a+Db) %2
d=1f xe xc

d’ = e x f x ¢’

14 /16



Combining UFP and BVP (cont.)

(c? = ((a® % 2%

+ (b2 % 2P)) % 25) A
(c’b = (aP + bP) % 2b) A
(@Y = fY * e *x c) A
(A’ = e x f¥ x c’¥) A

c=(((a%2 +

(b % 2)) %2
c’=(a+Db) %2
d=1f xe xc

d’ = e x f x ¢’

(cY = ¢’ &
((ch D) A

A (ch e D))

14 /16



Counter-Example-Guided Theory Refinement

1. Encode program in UFP (get formula F), set Fg = T
2. If F A Fg is unsat, return safe, else get counter-example CE®

3. Take first/some/subset of/every clause ¢ from F which is
encoded in UFP and if c® A CE® is unsat, refine ¢ to c?,

update Fg and goto 2
4. If Fis all in BVP, return unsafe

15 /16



In the paper ;)

16 /16



	HiFrog
	Theory Refinement

