
Electronic Document Preparation
Pocket Primer

Vít Novotný

December 4, 2018

Creative Commons Attribution 3.0 Unported (cc by 3.0)

Contents

Introduction 1

1 Writing 3
1.1 Text Processing 4
1.1.1 Character Encoding 4
1.1.2 Text Input 12
1.1.3 Text Editors 13
1.1.4 Interactive Document Preparation Systems 13
1.1.5 Regular Expressions 14
1.2 Version Control 17

2 Markup 21
2.1 Meta Markup Languages 22
2.1.1 The General Markup Language 22
2.1.2 The Extensible Markup Language 23
2.2 Markup on the World Wide Web 28
2.2.1 The Hypertext Markup Language 28
2.2.2 The Extensible Hypertext Markup Language 29
2.2.3 The Semantic Web and Linked Data 31
2.3 Document Preparation Systems 32
2.3.1 Batch-oriented Systems 35
2.3.2 Interactive Systems 36
2.4 Lightweight Markup Languages 39

3 Design 41
3.1 Fonts 41
3.2 Structural Elements 42
3.2.1 Paragraphs and Stanzas 42

iv CONTENTS

3.2.2 Headings 45
3.2.3 Tables and Lists 46
3.2.4 Notes 46
3.2.5 Quotations 47
3.3 Page Layout 48
3.4 Color 48
3.4.1 Theory 48
3.4.2 Schemes 51

Bibliography 53

Acronyms 61

Index 65

Introduction

With the advent of the digital age, typesetting has become available
to virtually anyone equipped with a personal computer. Beautiful
text documents can now be crafted using free and consumer-grade
software, which often obviates the need for the involvement of
a professional designer and typesetter. The level playing field of
the Internet coupled with the rising popularity of digital-only
documents then allows the author to bypass the publisher as well,
if they so wish, without jeopardizing their chance of recognition.

The aim of this book is to provide a general overview of the
tools and techniques tied with writing, designing, typesetting,
and distributing text documents—one of the principal means of
knowledge preservation and transfer known to man. Each chapter
describes one discrete step of document preparation along with
practical examples and references to literature for those interested
in further study.

The chapter are filled with examples that illustrate the sub-
ject matter. These should be consulted whenever the concepts
described in the text are unclear to the reader. Although care was
taken not to favor any computing environment, some examples
feature utilities for Unix and Unix-like operating systems. These
utilities may or may not have a suitable counterpart in operating
systems such as Windows; To try the corresponding examples out,
the reader is advised to install a free Unix-like environment—such
as Cygwin for Windows—on their computer.

This document
was prepared in
accordance with
William Strunk's
Elements of Style, an
American English
style guide for
general use.

Chapter 1

Writing

The essence of a document is the idea it represents. In the case of
a text document, this idea is articulated through speech, which
is transcribed using text, optionally accompanied by figures, and
then laid out on a sheet of paper according to a design. Since
the text is typically independent on the design, whose task is to
support and elicit the internal structure of the text, it is writing
that is the logical first step in the text document creation.

The essentials of writing in any given natural language include
grammar rules, which specify the structure of spoken language,
and orthographic rules, which impose additional requirements on
written text. The complexity of either set of rules depends entirely
on the language in question. Some writing systems, such as those
that incorporate Chinese characters, are not phonographic and
the correspondence between the spoken words and the written
symbols needs to be memorized by the writer on a word-to-word
basis. Other languages may use vastly different grammar rules
for speaking and for writing, which means that a spoken sentence
needs to be translated first before writing down. A writer needs
to recognize these specifics.

On top of grammar and orthographic rules stand style guides,
which, in order to improve consistency, codify how common lan-
guage patterns are encoded. More comprehensive style guides—
such as the Chicago Manual of Style or the Oxford Style Manual—often
go beyond writing and provide guidelines on design and type-

4 CHAPTER 1. WRITING

Zwei Trichter wandeln durch die Nacht.
Durch ihres Rumpfs verengten Schacht

fließt weißes Mondlicht
still und heiter
auf ihren
Waldweg

u.s.
w.

Figure 1.1: Exceptions that prove the rule about the separation of
text and design can sometimes be encountered in poetry. Above is
Christian Morgenstern's Trichter, where the text and its form are
intimately intertwined.

setting as well, making them an indispensable reference on the
editorial tradition.

Above all stand the typographic rules, which specify how the
resulting document should be typeset so that it doesn't disturb
the eye of the reader. These, as well as the orthographic rules on
hyphenation, can be left out of consideration during writing, as it
is the page that should be formed around the writing and not the
other way around.

1.1 Text Processing
Originally the domain of the pen, the quill, the stylus, and themore
recent typewriter machine, manuscripts of today are produced
mainly using the personal computer and stored in text files. The
discipline of creating and manipulating digital text is called text
processing and will be the focus of this section.

1.1.1 Character Encoding
Although computing at its most primal has no use for anything
but numbers, it has nevertheless been accompanied by text from
the very outset. Even the earliest computers from 1950s were pro-
grammed with both raw machine code and the text programming
language of the FORmula TRANslator (fortran). The digital repre-
sentation of letters, digits and other characters was initially closely

1.1. TEXT PROCESSING 5

ebcdic by ibm
was the default en-
coding on ibm's
System/360 main-
frames and was in
active use until the
introduction of pc
in 1981. In writing
systems using Chi-
nese characters, spe-
cial encodings, such
as Big5, j is , and
euc , are used to
this day. For brevity,
the text focuses on
the main stream
of international
encodings.

tied to each specific application and processor architecture, but
with the advent of computer networking in 1960s, mutual intelli-
gibility became a point of concern. “We had over sixty different
ways to represent characters in computers. It was a real Tower of
Babel,” explains Bob Berner [1], an American computer scientist
who worked at ibm during 1956–1962 and who drafted the Ameri-
can Standard Code for Information Interchange (asci i) [2]—a character
encoding from 1963 that unified the digital representation of text
across the computer industry and enabled computer networking
on a large scale.

ASCII

In asci i, every character is represented by a number from zero
to 127, which is transformed to a seven-bit integer called a char-
acter code. These 128 codes are used to encode printable charac-
ters—spanning the letters of the English alphabet, digits, punctua-
tion, and other symbols—and control codes, as depicted in Table 1.1.
Unlike printable characters, control codes have no fixed visual rep-
resentation and they were used to implement application-specific
communication protocols and text formatting; their precise se-
mantics were defined in a much later standard from 1972 [3]. Un-
constrained by the bandwidth and the storage limitations of the
1960s and 1970s, today's communication protocols and text for-
mats gravitate towards markup constructed from printable char-
acters, which, unlike control codes, are easy to read and write by
humans.

The followingpropertiesmake it easy tomanipulate and reason
about character strings encoded in asci i:

• Each character is represented by exactly seven bits. This makes
it easy to allocate space for character strings of fixed length, to
measure the number of characters stored in a memory region, and
to perform basic operations, such as adjacent character retrieval
or text truncation.

• Characters are alphabetically ordered. Character strings can there-
fore be collated by comparing character code binary values.

• Lowercase and uppercase letters, digits and control codes form
contiguous ranges of character codes. This simplifies classification.

6 CHAPTER 1. WRITING

7 0 0 0 0 1 1 1 1
6 Bits 0 0 1 1 0 0 1 1
5 0 1 0 1 0 1 0 1
4 3 2 1 Ctrl codes Symbols Upper case Lower case
0 0 0 0 nul dle ␣ 0 @ P ` p
0 0 0 1 soh dc1 ! 1 A Q a q
0 0 1 0 stx dc2 " 2 B R b r
0 0 1 1 etx dc3 # 3 C S c S
0 1 0 0 eot dc4 $ 4 D T d t
0 1 0 1 enq nak % 5 E U e u
0 1 1 0 ack syn & 6 F V f v
0 1 1 1 bel etb ' 7 G W g w
1 0 0 0 bs can (8 H X h x
1 0 0 1 ht em) 9 I Y i y
1 0 1 0 lf sub * : J Z j z
1 0 1 1 vt esc + q K [k {
1 1 0 0 ff fs , < L \ l |
1 1 0 1 cr gs - = M] m }
1 1 1 0 so rs . > N ^ n ~
1 1 1 1 si us / ? O _ o del

Table 1.1: The asci i encoding, as specified in the 1986 revision of
the standard. [4]

Code point range Encoding
0–127 0␣␣␣␣␣␣␣

128–2047 110␣␣␣␣␣ 10␣␣␣␣␣␣
2048–65,535 1110␣␣␣␣ 10␣␣␣␣␣␣ 10␣␣␣␣␣␣

65,536–1,114,111 11110␣␣␣ 10␣␣␣␣␣␣ 10␣␣␣␣␣␣ 10␣␣␣␣␣␣

Table 1.2: The utf-8 encoding. Each ␣ represents one bit of the
ucs code point in binary.

Character Code point encoding
Ř 344 ; 101011000 ; 11000101 10011000
e 101 ; 1100101 ; 01100101
č 269 ; 100101000 ; 11000100 10101000

Table 1.3: An example of the utf-8 encoding

1.1. TEXT PROCESSING 7

• There is precisely one way to encode any printable character. The
conversion between the lower- and uppercase letters is a matter of
inverting one bit.
This comes at the expense of support for non-English writing
systems. As a temporary workaround, a set of asci i derivatives
that replaced the less-needed characters of # $ @ [\] ^ ` { | } and ~
for international characters was specified in the iso 646 standard
from 1972. [3]

Eight-bit Encodings

With the byte size stabilizing at eight bits, new character encodings
emerged that were based on asci i and used the additional bit to
encode characters of non-English writing systems while retaining
complete backwards compatibility with asci i. Beside the numer-
ous vendor-specific encodings (called code pages), a set of fifteen
eight-bit encodings covering all major modern writing systems
whose characters fit within the space of 128 additional combina-
tions was standardized in the iso/iec 8859 series released during
1986–2001.

Compared to asci i, eight-bit encodings introduced an addi-
tional level of complexity to text processing:

• Each character is exactly eight bits wide. The manipulation with
strings is therefore as straightforward as with asci i.

• Character strings can no longer be collated by character code com-
parison. Each encoding requires separate collation tables.

• Classes of characters, such as uppercase and lowercase letters or
punctuation, no longer form contiguous ranges and their position
varies among encodings. This impedes character classification.

• Idiosyncrasies, such as the ligature of æ and invisible hyphenation
hints, are included in several encodings, which makes it more
difficult to determine character string equivalence. Algorithms for
case conversion vary among encodings.

• There exists no standard mechanism to detect which encoding is
being used. The distinction needs to be done on the application
level using either heuristics, additional metadata, or human in-
tervention. Consequently, no standard mechanism exists to use
different character encodings within a single text document.

8 CHAPTER 1. WRITING

Notable are also
the seven-bit encod-
ings of utf-7 and
Punycode, which

bring Unicode sup-
port to protocols

that were designed
with the seven-

bit asci i in mind,
such as e-mail.

A portion of this complexity is inherent in the task of encoding the
characters of all modern writing systems, but the overhead caused
by the character encoding fragmentation proved to be unnecessary.

The Universal Character Set and Unicode

In the early 1990s, the continual increase in the available band-
width and storage led to the creation of the standards of Unicode [5,
6] and the Universal multiple-octet coded Character Set (ucs) [7] in an
attempt to create a text encoding that would contain the characters
of all the world's languages and succeed asci i as the lingua franca
of text interchange.

ucs is an ever-expanding catalogue of characters from writing
systems both modern and ancient, and symbols ranging from
diacritical marks, punctuation, and ideograms to mahjong tiles,
alchemical symbols, and the ancient Greek musical notation. Each
of these characters is assigned a number, called a code point, ranging
from 0 to 2,147,483,647 (7F FF FF FF in the hexadecimal notation)
with the numbers of the most common characters in the range
from 0 to 65,535 (FF FF) called the Basic Multilingual Plane (bmp).
The smallest unit of division in ucs are blocks, which contain 256
thematically related characters. ucs encodings map code points
to binary character codes and vise versa.

Three major encodings are specified in the ucs standard and
its amendments [8, 9]:

1 utf-32 directly encodes ucs characters by transforming their code
points to four-byte integers. utf-32 is also known as ucs-4.

2 utf-16 directly encodes characters within bmp by transforming
their code points to two-byte integers. Code points in the range
from 65,536 to 1,114,111 (01 00 00–10 FF FF) are transformed into
pairs of two-byte integers, called surrogate pairs, ranging from
55,296 to 57,343 (DC 00–DF FF). To enable the utf-16 encoding, the
code points in this range will never be assigned to characters [10,
sec. 3.4, D15]. The same is true of code points above 1,114,111
(10 FF FF), which allows utf-16 to encode any ucs character.

3 utf-8 directly transforms code points ranging from 0 to 127 (7F)
to one-byte integers. Since the first ucs block of the bmp matches
asci i, any text encoded in eight-bit asci i is also encoded in utf-8.
Code points in the range from 127 to 1,114,111 (00 00 7F–10 FF FF)

1.1. TEXT PROCESSING 9
One of the design
goals of ucs was to
avoid assigning
code points to
different glyphs that
carry the same
meaning. As a
result, the visually
distinctive Han
characters used in
the East Asian
countries of China,
Japan, Korea, and
Vietnam were
merged into a set of
75,960 ideograms in
a process referred to
as the Han
Unification [10,
sec. 18.1]. This
simplifies text
processing, but also
makes it impossible
to encode a text in
multiple East Asian
languages without
having to rely on
external markup to
select appropriate
regional fonts. As a
result, a derivative
of ucs that doesn't
implement the Han
Unification was
developed for use in
operating systems
based on the
Real-time Operating
system Nucleus
(tron) and is used
in the East Asia
alongside ucs and
region-specific
encodings.

餐甑逞扉牙慨
餐甑逞扉牙慨
餐甑逞扉牙慨

1

餐甑逞扉牙慨

1

Figure 1.2: Several Han characters in the traditional Chinese, Japa-
nese, Korean, and Vietnamese variants

are transformed into two to four one-byte integers ranging from
128 to 253 (80–FD). The encoding is illustrated in tables 1.2 and 1.3.

utf-32 is primarily used for the fixed-space internal represen-
tation of individual ucs characters inside programs, utf-16 fulfills
a similar role in programs that only work with bmp, and utf-8 is
used for text storage and interchange. Since 2010, the majority of
text content on the Web has been encoded in asci i and utf-8. [11]

Unicode was a competing standard for universal text encoding
that underwent a merger with ucs in version 1.1 and since then,
the standards have been kept closely synchronised. Unicode is a
superset of ucs which defines additional information about ucs
characters—such as their general category, directionality, case, or
numeric value [10, sec. 3.5 and ch. 4]—, various text processing
algorithms, and implementation guidelines.

Regarding text processing, Unicode and ucs represent a com-
promise between the simplicity of the seven-bit asci i and the
heterogeneity of eight-bit encodings:

10 CHAPTER 1. WRITING

Ǻ = Å + ́ = A + ̊ + ́
Figure 1.3: Some ucs characters can be either input as a single
entity or composed from several combining characters. Regarding
Unicode normalization forms, all of the above representations are
canonically equivalent.

iconv -f latin2 -t utf8 -- old.txt > new.txt

Figure 1.4: Text files can be converted between encodings using the
iconv command-line tool. The sample code shows the file old.txt
being converted from the iso/iec 8859-2 encoding to utf-8. The
result of the conversion is stored in the file new.txt.

• If simple text manipulation is preferred over space efficiency, each
character can be made exactly two or four bytes wide using the
utf-16 and utf-32 encodings.

• Although character strings can not be collated by a simple charac-
ter code comparison, a collation algorithm is defined in the Uni-
code specification [12] and collation tables for major locales [13]
are maintained by the Unicode Consortium.

• Classes of characters—such as uppercase letters, lowercase letters,
numbers, and punctuation—do not form contiguous ranges, but
their position is directly specified in the standard [10, sec. 4.5].

• Although idiosyncrasies—such as ligatures, invisible hyphena-
tion hints, and combining characters—are present in ucs, explicit
normalization algorithms for character string equivalence testing
are specified by the standard [10, sec. 2.12]. An algorithm for case
conversion is also specified [10, sec. 3.13].

• The byte order mark (FE FF) character can be inserted at the
beginning of a text as a signature of Unicode encodings. As the
name suggests, the order in which the FE and FF bytes arrive also
indicates the order of bytes (called endianity) that was used to
encode integers. In utf-32 and utf-16, endianity can be chosen
arbitrarily by the encoding application. In utf-8, one-byte integers
are used and the notion of endianity is therefore meaningless.

1.1. TEXT PROCESSING 11

Figure 1.5: Text input methods are not limited to keyboard layouts.
Software that enables the input of non-Latin characters on a key-
board through reversed romanization can often be the best option
for writing systems with a large number of characters. Above is
the Google Pinyin input method for the Android operating sys-
tem, which makes it possible to input Chinese characters using
the pinyin phonetic system.

Compose + O + R = ®
Compose + 3 + 4 = ¾
Compose + s + s = ß
Compose + ~ + ’ + a = ấ

Figure 1.6: The Compose key followed by a mnemonic sequence of
asci i characters produces a ucs character. Although originally a
physical key, Compose is not available on modern pc and Apple
keyboards and is usually mapped to the right Ctrl or Super key
in software. Compose is natively supported on Unix and Unix-like
operating systems using the XWindowSystem.On other operating
systems, support can be added by third-party software.

12 CHAPTER 1. WRITING

Alt + 1 + 6 + 0 = á
Alt + 0 + 2 + 2 + 5 = á
Alt + + + E + 1 = á

Figure 1.7: On the Windows operating system, holding the Alt
key and typing a sequence of numbers produces a character with
the corresponding number from either an ibm code page, if the
number has no leading zero, or from a Windows code page oth-
erwise. The code pages vary depending on the current locale; in
English locales, the ibm code page 437 and the Windows code
page 1252 are used. After a Windows Registry modification, it is
also possible to directly produce ucs characters by holding the Alt
key and typing the corresponding ucs code point in hexadecimal.

1.1.2 Text Input

To insert text into a document, it is necessary to use an input
device. In case of personal computers, this is typically a computer
keyboard and a mouse, although the ongoing research in the areas
of Sound Recognition (sr) and Optical Character Recognition (ocr)
makes it possible to use a microphone or a tablet as well. On hand-
held devices, the use of either a numeric keypad or a touch-screen
is more typical.

An operating system will typically provide one or more input
methods for each input device through a component commonly
referred to as the Input Method Editor (ime). The asci i encoding
was developed with typewriters and teleprinters in mind and, as
their direct descendant, the standard computer keyboard provides
support for all asci i characters. This doesn't apply to the much
larger ucs and it is the task of an ime to provide a mechanism
for the creation and selection of keyboard layouts that will allow
the user to input any ucs character. Some programs may provide
input methods of their own that are independent on the ime.

1.1. TEXT PROCESSING 13

1.1.3 Text Editors

A text editor is an application that can be used to create and modify
text files. Entry-level text editors are often distributed with an
operating system and offer little beyond the ability to load, modify,
and save text files in a text encoding of choice. Entry-level text edi-
tors with a Graphical User Interface (gui) include the free Leafpad
for gnu/Linux and the Berkeley Software Distribution (bsd) family
of operating systems, and the proprietary Notepad for Windows
and TextEdit for Mac OS. Entry-level text editors with a Command
Line Interface (cli) include the free joe, gnu nano, and pico.

More advanced text editors come with the support for regular
expressions and version control—which will be covered in sections
1.1.5 and 1.2—and user modules that extend the base functional-
ity. Advanced gui text editors include the free Notepad++ and
Atom, and the proprietary Sublime Text. Advanced cli text editors
include the free Emacs, vi, and vim. These cli text editors are no-
torious for their steep learning curve; in exchange, they empower
the users to perform complex text editing.

1.1.4 Interactive Document Preparation Systems

InteractiveDocument Preparation Systems (dpses) are a breed of text
editors that produces fully-formatted text documents instead of
(or along with) text files. The reader is advised to avoid interactive
dpses that use proprietary, undocumented, or obscure file formats
which lock the user into using the respective dps. Well-defined
interactive dps file formats include the Portable Document Format
(pdf) [14], the Office Open XML format (ooxml) [15], and the Open
Document Format for office applications (odf) [16].

The primary difference between text editors and dpses is the
fact that the user is expected to use the dps tomark up, design, and
typeset the resulting text document, whereas with plain text files
a multitude of choices is available at each step of the document
preparation process. The self-sufficient nature of dpses may be a
time-saving feature for simpler documents, but in the case of more
complex documents, the markup and typesetting capabilities of a
dps may not be up to par with those of a dedicated tool. Interactive
dpses include the free Apache OpenOffice and Scribus, and the

14 CHAPTER 1. WRITING

Mastering Regular
Expressions [19] by
Jeffrey E. F. Friedl

is an extensive
resource on regexes.

proprietary TextEdit, Microsoft Word, Scribus, Adobe InDesign,
Adobe FrameMaker, and QuarkXPress.

1.1.5 Regular Expressions
The Chomsky hierarchy is a classification of text production rule
sets (called formal grammars), which was proposed [17] in 1956 by
the American linguist Noam Chomsky in his endeavor to discover
a good formal model for the description of natural languages. The
class of regular grammars, which is the least powerful of the pro-
posed classes, and the related formal model of regular expressions
enable the writer to match patterns within text.

Since regular expressions are just a formal model, a software
implementation needs to settle on a concrete syntax. One of the
earliest standard syntaxes are the Basic Regular Expressions (bre)
and the Extended Regular Expressions (ere) syntaxes [18, part 1, ch. 9]
described in Table 1.4,which are supported bymost text processing
programs on Unix and Unix-like operating systems.

More extensive syntaxes include the gnu extensions of bre
and ere, the regex syntax of the Perl programming language, and
their derivatives. For these syntaxes, the term regular is amisnomer,
as they can be used to describe formal grammars that, according to
the Chomsky hierarchy, are stronger than regular. To disambiguate
the term, expressions in these syntaxes are often called regexes.

Many regex syntaxes and the software that implements them
were designed for the processing of asci i text and may behave
in surprising ways, when confronted with ucs characters. The
software may assume that each character is exactly one byte wide
and fail to recognize any character that occupies several bytes. It
may also assume that all ucs characters fall within bmp and ex-
hibit the same problem with characters outside bmp. More subtle,
but no less precarious, can be the lack of support for Unicode case
conversion and normalization algorithms, which makes it difficult
to perform robust case-insensitive matching and the matching of
characters that can be encoded in several different ways. The lack
of awareness of the invisible characters that can appear in ucs
text—such as the zero width space (20 0B), zero width non-
joiner (20 0C), zero width joiner (20 0D), and zero width
no-break space (FE FF)—, is also problematic and can lead to
false negative matches. Conversely, modern regex syntaxes that at

1.1. TEXT PROCESSING 15

bre regex Description Matches
we\{1,2\}p The repetition expression in the form of

u�\{u�,u�\}matches the character u� repeated
u� ∈ ⟨u�; u�⟩ times. Other forms include u�\{u�,\}

for u� ∈ ⟨u�; ∞) and u�\{u�\} for u� = u�.

weeps, wept

e*ne Star (*) is a repetition operator equivalent to the
interval expression of \{0,\}.

never, enemy,
Kleene

\(⟨regex⟩\) A subexpression is a parenthesized regex. Any
interval expression or repetition operator used
immediately after a subexpression applies to
the entire parenthesized regex.

⟨regex⟩

^ar At the beginning of a regex or a subexpression,
a caret (^) matches the beginning of a string.

argument,
arrow keys

ore$ At the end of a regex or a subexpression, the
dollar sign ($) matches the end of a string.

iron ore,
dumbledore

be. A period (.) matches any single character. or not to be?
be[ea] A matching list expression is enclosed in square

brackets ([]) and contains a list of characters
that the bracket expression matches. It may
contain other entities omitted here for brevity.

beehive,
grizzly bear,
glass beads

be[^ea] A non-matching list expression contains a caret
(^) as its first character and matches any
character that the corresponding matching list
expression would not match.

obeah, bend,
libela

\^*\.\\\$ Backslash (\) is an escape character that either
suppresses or activates the special meaning of
the following character.

^*.\$

\(..\).*\1 A backreference in the form of an escaped
number u� ∈ ⟨1; 9⟩ (\1, \2, …, \9) matches
anything the u�th subexpression matched.

ara ararauna,
dardanelles,
nationality

Table 1.4: An informal description of the bre syntax (above) and
the differences in the ere syntax (below)

ere regex Description Matches
we{1,2}p Unlike in bres, braces aren't escaped. weeps, wept
pe+rl? The plus sign (+) and the question mark (?) are

repetition operators equivalent to the interval
expressions of \{1,\} and \{0,1\}.

persona,
peer, speech,
perl

(⟨regex⟩) Unlike in bres, parentheses aren't escaped. ⟨regex⟩
(on|t). Vertical line (|) is an alternation operator that

separates multiple regexes. The whole regex
matches any of the alternative regexes.

one, two,
trophy, truth

(..).*\1 eres do not support backreferences. ⟨undefined⟩

16 CHAPTER 1. WRITING

Regex Description
\x{⟨n⟩} Matches the ucs character with code point ⟨n⟩ in hexadecimal.
\N{⟨n⟩} Matches the ucs character, whose Name property, Name_Alias

property, or code point label tag equals ⟨n⟩.
\p{⟨p⟩} Matches any ucs character with property ⟨p⟩.
\P{⟨p⟩} Matches any ucs character without property ⟨p⟩.

Property Description
Letter This property is satisfied by any letter.
Punctua-

tion

This property is satisfied by any punctuation.

Symbol This property is satisfied by any symbol.
Mark This property is satisfied by any mark.
Number This property is satisfied by any number.
Separator This property is satisfied by any separator.
Other This property is satisfied by any ucs character that doesn't be-

long to any of the abovelisted categories.
Block=⟨b⟩ This property is satisfied by characters that reside in the ucs

block ⟨b⟩. ucs blocks include Basic Latin, Greek, Arabic, etc.
Script=⟨s⟩ This property is satisfied by characters that belong to the writing

system ⟨s⟩. Writing systems include Latin, Korean, Chinese, etc.
Numeric

Value=⟨n⟩
This property is satisfied by any ucs character with the numeric
value ⟨n⟩.

Table 1.5: The elements of the Unicode regex syntax implemented
by Perl 5.2 and Java 7. The list of properties is not exhaustive.

The authoritative
resource on grep,

sed, and awk is
Sed & awk [21],
which explains

each program as
well as the bre

and ere syntaxes
in full detail.

least partially implement the Unicode standard for regular expres-
sions [20]—such as those of Perl 5.2 or Java 7—are actively aware
of ucs and provide features that enable the matching of characters
based on their general category, numeric value, directionality, and
other properties defined by Unicode, as shown in Table 1.5.

The most elementary text processing cli program is grep,
which makes it possible to search text files for fixed strings and
regexes in default of an advanced text editor. Unless configured
otherwise, the tool will present lines that contain one or more
matches to the user. A more advanced text-processing cli pro-
gram is sed, which features a simple programming language that
can be used to arbitrarily search and transform text files. Awk is
a cli program that also features a text-processing programming

1.2. VERSION CONTROL 17

The authoritative
resource on svn is
Version Control with
Subversion [22], af-
fectionately known
as the Subversion
book.

language, albeit a more advanced one than that of sed. Originally
developed for the Research Unix during 1973–1977, grep, sed, and
awk are available in various flavors for most operating systems.

1.2 Version Control
When writing a text document, it is often useful to have a backup
of the previous versions of files, so that undesirable changes can
be reverted whenever necessary. If more than one person contrib-
utes to the document, the ability to track the authorship of these
changes also becomes an asset. At their most rudimentary, Version
Control Systems (vcs) record changes along with their descriptions
and authorship information. These changes can then be viewed,
and reverted. With a single contributor, vcs are a convenient alter-
native to manual version archival. With several contributors, vcs
become an essential tool.

vcs can be dichotomized based on their architecture, which is
either centralized or decentralized . Centralized vcs store all versions
in a repository located on a remote server. Users send new versions
to the server and retrieve existing versions using a client software.
The client software is thin in the sense that it does not store more
than one version locally and its operation is fully dependent on
the availability of the server. An example of centralized vcs is
SubVersioN (svn).

By comparison, there is no designated server in decentralized
vcs and the users can upload and download new versions directly
from one another. The client software is thick in the sense that all
users have a local repository with every existing version, which
they can view and manipulate at any time. The disadvantages
include the more complex workflow, greater storage size require-
ments and the increased opportunity for the users not to share
their local changes frequently enough, leading to an increased
chance of collisions. Examples of decentralized vcs include Git,
Mercurial, or Bazaar.

Although vcs can be used to keep track of any kind of files,
they are especially geared towards text files, which they can easily
display along with changes. However, most interactive dpses do
not produce text files, which can make version control challenging.
As a solution, some dpses include internal version control func-

18 CHAPTER 1. WRITING
After a remote

repository has been
established, users

download the latest
version of the

document and then
keep downloading

the latest changes by
other users and

uploading changes
of their own.

svnadmin create

sv
n
ch
ec
ko
ut

sv
n
up
da
te

svn
commit

Figure 1.8: The basic svn workflow

An example would
be the graphical

svn client Tortoise
svn that is able to

display the changes
between two ver-
sions of Microsoft
Word documents
using the inter-

face provided by
Microsoft Office.

tionality that can record changes directly into output files. Other
dpses provide an interface for external vcs to display changes
between two versions of output documents produced by the dpses.
A category of its own formweb services that enable real-time inter-
active collaboration—such as Word Online or Google Documents.

1.2. VERSION CONTROL 19
After a remote
repository has been
established, users
make local copies of
the entire repository
and then store
changes in their
local repositories or
revert changes from
their local
repositories. Users
periodically
download the latest
changes by other
users and upload
changes of their
own.

git init

gi
t
cl
on
e

gi
t
pu
ll

git
push

git reset git commit

Figure 1.9: The diagram above depicts the basic Git workflow.
The diagram below depicts the use of the Git program with an
svn repository; this bears all the advantages and disadvantages
associated with decentralized vcs.

svnadmin create

gi
t
sv
n
cl
on
e

gi
t
sv
n
re
ba
se

git
svn

dcommit

git reset git commit

20 CHAPTER 1. WRITING

Figure 1.10: The built-in vcs of Microsoft Word (top) and Apache
OpenOffice (bottom)

Figure 1.11: Tortoise svn is a graphical frontend for svn with
the ability to display the difference between two versions of a
Microsoft Word document even though it is not a text file.

Chapter 2

Markup

Amanuscript can be a seamless current of words and still make
perfect sense to an author. To truly capture its meaning in a clear
and unambiguous manner, however, the author will often need
to supplement the manuscript with a set of annotations. At a
more fundamental level, this refers to the compliance with the
orthographic rules—such as the correct spelling, capitalization,
word breaks, and punctuation—that are specific to the language
of the document. It is not at all unreasonable to expect that this
basic compliance should be already met by the manuscript. At a
higher level, this consists of discovering and marking up the inner
order and logic of the text, so that the resulting document can later
be typeset in a way that visually reflects its structure.

It is not unusual for an author to write and mark up their man-
uscript at the same time. Nevertheless, each of the two activities
represents a distinct concept. Writing is the process of breaking
ideas down into raw sequences of words. To mark up these words
then is to take and reassemble them back into meaningful units of
linguistic thought.

Markup can be created using a variety of markup languages.
Aside from logical markup, which captures the logical structure
of a document, markup languages may also provide presentation
markup, which directly impacts the visual properties of the docu-
ment but carries no semantic information. The usage of presenta-
tion markup makes it impossible to separate the markup from the
design and to capture the structure of the document. As a result,

22 CHAPTER 2. MARKUP

More information
about the project

can be found within
the Roots of sgml –

A Personal Recol-
lection [23] and

sgml: The Reason
Why and the First

Published Hint [24].

The authoritative
resource on sgml
is the sgml Hand-
book [27], which
includes the full
text of the stan-

dard bearing exten-
sive annotations.

the consistency in the design of each logical part of the document
needs to be ensured manually, and future changes of design be-
come error-prone and tedious. In this regard, logical markup is
to design what style guides are to writing: a means of ensuring
internal consistency that should be used whenever possible.

2.1 Meta Markup Languages

2.1.1 The General Markup Language
The situation engulfing digital typesetting was growing increas-
ingly frustrating for publishers in the 1960s. Themarkup languages
used by different typesetting systems varied wildly and once a
publisher had a large collection of documents typeset via a given
company, switching to another one could be a costly venture. This
power imbalance artificially increased the price of digital typeset-
ting, leading to a demand for a universal markup language.

This demandwas met by a project developed at the Cambridge
Scientific Center of the International Business Machines Corporation
(ibm) in the early 1970s. The project aimed at imbuing a text editor
with the ability to query, edit, and display documents from a
central repository to allow the usage of computers in legal practice.
Very early on in the development it became apparent that the
main problemwere going to be themarkup languages inwhich the
documents were written. These languages varied wildly andmany
of them comprised largely presentation markup, which made
information retrieval impossible without heavy use of heuristics.
To resolve these issues, a unifying markup language called the
General Markup Language (gml) was drafted. The language was
released [25] to the public in 1981 and finally standardized in 1986
as the Standard General Markup Language (sgml). [26]

sgml documents consist of text mixed with tags, which delimit
meaningful sections of the document called elements. Elementsmay
carry additional information in attributes. Additionally, sgml doc-
uments may contain miscellaneous instructions for the programs
that are processing them as well as human-readable comments.
An umbrella term for the various parts of sgml document is nodes.
Repeated strings of text can be declared as entities that can be used
throughout the document in place of the original strings.

2.1. META MARKUP LANGUAGES 23

A list of tools for
the manipula-
tion of files in xml
schema languages is
maintained on the
Web site of w3c at
http://www.w3.org/

XML/Schema.

Although the described structure is shared by all sgml docu-
ments, the actual syntax, as well as the restrictions regarding the
contents and the attributes of individual elements, are declared
within a Document Type Declaration (dtd), which can be different
for each document. It is worth noting that a dtd only declares
the syntax of an sgml document; the semantics of the individual
elements and their attributes are left to the interpretation of the
program processing the document. The syntax and the constraints
imposed by a dtd define an application of sgml. An sgml docu-
ment is considered to be a valid instance of an sgml application,
when it conforms to the corresponding dtd.

2.1.2 The Extensible Markup Language
Although sgml was designed to be the general format for data
exchange, the complexity of the specification and the lack of sup-
port for Unicode (see Section 1.1.1) proved to be a major hindrance
preventing its wider adoption and the development of sgml tools.
In a response, the World Wide Web Consortium (w3c) published a
specification of the eXtensible Markup Language (xml) [28] in 1998.
Along with the introduction of xml, the sgml specification re-
ceived a technical corrigendum [29], which turned xml into an
sgml application defined through a dtd.

This dtd completely fixes the syntax of xml documents, which
makes it possible to differentiate between two levels of correct-
ness. An xml document is considered to be well-formed, when it
conforms to the dtd that specifies the syntax of xml and to the
xml specification. An xml document is considered to be valid
against an dtd, when it is well-formed and conforms to the said
dtd. Along with dtds, there exists a wealth of schema languages for
xml—such as w3c xml Schema, relax ng, or Schematron—that
can be used to check the validity of an xml document instead of a
dtd. The constrains imposed by either a dtd or a schema define
an application of xml (also language or format).

Alongwith schema languages, other supplementary languages
exist, such as XPointer, XPath, and XQuery for the retrieval of data
from XML documents, the Cascading Style Sheets language (css) [30]
for the specification of xml document design, and the various
languages for the description ofWeb resources that wewill discuss
in Section 2.2.3.

http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema

24 CHAPTER 2. MARKUP

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE recipe SYSTEM "recipe.dtd">

<recipe>

<name>Palatschinken</name>

<description>A Slavic crêpe-like dish</description>

<ingredientList serves="8">

<ingredient amount="120g">Plain flour</ingredient>

<ingredient amount="2">Egg</ingredient>

<ingredient amount="300ml">Milk</ingredient>

<ingredient amount="1 tblspn">Oil</ingredient>

<ingredient amount="1 pinch">Salt</ingredient>

</ingredientList>

<stepList>

<step>Combine the ingredients and whisk until

you have a smooth batter.</step>

<step>Heat oil on a pan, pour in a tablespoonful

of the batter, fry until golden brown.</step>

<step>Repeat until there is no batter left.</step>

<step>Serve rolled and filled with jam.</step>

</stepList>

</recipe>

Figure 2.1: An example xml document (recipe.xml)

2.1. META MARKUP LANGUAGES 25
dtds in sgml and
xml documents can
be either linked to
the document
through PUBLIC and
SYSTEM identifiers
(top), directly
embedded in the
document (middle),
linked to the
document and then
extended by an
embedded
specification
(bottom), or
omitted.

<!DOCTYPE recipe PUBLIC "-//EXAMPLE//DTD FOR RECIPES"

"http://www.example.com/DTD/recipe.dtd">

<!DOCTYPE recipe SYSTEM "recipe.dtd">

<!DOCTYPE recipe [

<!ELEMENT recipe (name, description, ingredientList,

stepList)>↪

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT ingredientList (ingredient+)>

<!ATTLIST ingredientList serves CDATA #REQUIRED>

<!ELEMENT ingredient (#PCDATA) >

<!ATTLIST ingredient amount CDATA #REQUIRED>

<!ELEMENT stepList (step+) >

<!ELEMENT step (#PCDATA)>]>

<!DOCTYPE recipe PUBLIC "-//EXAMPLE//DTD FOR RECIPES"

"http://www.example.com/DTD/recipe.dtd" [

<!-- Omitted for brevity. -->]>

<!DOCTYPE recipe SYSTEM "recipe.dtd" [

<!-- Omitted for brevity. -->]>

Figure 2.2: An example dtd

element recipe {

element name { text },

element description { text },

element ingredientList {

attribute serves { xsd:positiveInteger },

element ingredient {

attribute amount { text }, text

}+

}, element stepList {

element step { text }+

}

}

Figure 2.3: A reformulation of the dtd from Figure 2.2 in the
compact syntax of the relax ng schema language (recipe.rnc).
Note how relax ng allows us to constrain the attribute data types.

26 CHAPTER 2. MARKUP

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="recipe"><complexType><all>

<element name="name" type="string" minOccurs="1"/>

<element name="description" type="string"

minOccurs="1"/>

<element

name="ingredientList"><complexType><sequence>↪

<element name="ingredient" minOccurs="1"

maxOccurs="unbounded">

<complexType><simpleContent>

<extension base="string">

<attribute name="amount" type="string"/>

</extension>

</simpleContent></complexType>

</element></sequence>

<attribute name="serves" type="positiveInteger"

use="required"/>

</complexType></element>

<element name="stepList"><complexType><sequence>

<element name="step" type="string" minOccurs="1"

maxOccurs="unbounded"/>

</sequence></complexType></element>

</all></complexType></element>

</schema>

Figure 2.4: A reformulation of the dtd from Figure 2.2 in the xml
Schema language (recipe.xsd)

xmllint -noout --dtdvalid recipe.dtd recipe.xml

xmllint -noout --schema recipe.xsd recipe.xml

trang recipe.rnc recipe.rng # Compact -> Full Relax NG

xmllint -noout --relaxng recipe.rng recipe.xml

Figure 2.5: xml documents can be easily validated against xml
schemata using the free command-line program of xmllint.

2.1. META MARKUP LANGUAGES 27

A notable feature of xml unavailable in sgml are namespaces,
which were added to the xml specification [32] in 1999. Name-
spaces enable the inclusion of elements and attributes from differ-
ent xml applications within a single xml document; each appli-
cation is uniquely identified through the Internationalized Resource
Identifiers (ir is) [33]. Namespaces in xml are a spiritual succes-
sor of a more expressive sgml feature of CONCUR, which makes it
possible to mark up several structural views of a single document.
Unlike with CONCUR, which ties each view to an sgml dtd, there
exists no general mechanism for the translation of the ir is to xml

Speech

AASE: See, you dare not! Every word of it's a lie!
PEER: Swear? Why should I?
AASE: Well then, swear to me it's true!
PEER: No, I'm not!
AASE: Peer, you're lying!

Verse
Every word of it's a lie!
Swear? Why should I? See, you dare not!
Well then, swear to me it's true!
Peer, you're lying! No, I'm not!

<(V)line>

<(S)speech who="Aase">Peer, you're lying!</(S)speech>

<(S)speech who="Peer">No, I'm not!</(S)speech>

</(V)line><(V)line>

<(S)speech who="Aase">Well then,

swear to me it's true!</(S)speech>

</(V)line><(V)line>

<(S)speech who="Peer">Swear, why should I?</(S)speech>

<(S)speech who="Aase">See, you dare not!

</(V)line><(V)line>

Every word of it's a lie!</(S)speech>

</(V)line>

Figure 2.6: The markup of the dramatic and metrical views of
Henrik Ibsen's Peer Gynt using the CONCUR feature of sgml. This
figure was inspired by the figures found in the article goddag: A
Data Structure for Overlapping Hierarchies [31].

28 CHAPTER 2. MARKUP

The authoritative
resource on the Doc-
Book xml format
is DocBook 5: The

Definitive Guide [34].
The book itself is
written in Doc-

Book and its source
code is publicly
available at http:

//docbook.org.

The Postel's law
states that one

should be conser-
vative in what they

send, but liberal
in what they ac-

cept. [37, sec. 2.10]
It is one of the base
principles for build-
ing robust commu-
nication protocols.

schemata. This makes it impossible to validate namespaced xml
documents, unless all the ir is and their schemata are known to
the parser.

Due to the reduced complexity of xml compared to sgml, the
language was adopted by the industry and has superseded sgml
in most applications. Some of the applications of xml for docu-
ment preparation include DocBook—a technical documentation
markup language used for authoring books by publishers such
as O'Reilly Media and for documenting software at companies
such as Red Hat, suse, or Sun Microsystems—, the Text Encoding
Initiative (tei)—a general text encoding markup language for the
use in the academic field of digital humanities—, the Mathematical
Markup Language (mathml)—a markup language for the descrip-
tion of mathematical formulae—, or the Scalable Vector Graphics
language (svg)—a vector graphics format. Other xml applications,
such as xhtml and rdf/xml, will be discussed in Section 2.2.

2.2 Markup on the World Wide Web

2.2.1 The Hypertext Markup Language
In 1989, an English computer scientist named Timothy John
Berners-Lee proposed a decentralized system for sharing doc-
uments within the European Organization for Nuclear Research
(la Conseil Européen pour la Recherche Nucléaire, cern) [35]. The
system laid foundation for the Web and earned its author knight-
hood. The markup language used to write documents for the
system was an application of sgml called the HyperText Markup
Language (html). In 1993, the Web started to gain traction among
the general public owing largely to the release of the first graphical
Web browser Mosaic, which paved way for the Web browsers of
today. In 1994, Timothy John Berners-Lee formed w3c, which has
since developed the standards for the Web.

The first standard version of html was html 2.0 [36] pub-
lished in 1995. As the Web was becoming ubiquitous, it began
accumulating an increasing number of documents that weren't
valid instances of html, since most Web browsers faced with a
malformed document would act in accordance with the Postel's
law and try to render the document despite its deficiencies. In

http://docbook.org
http://docbook.org

2.2. MARKUP ON THE WORLD WIDE WEB 29

JScript and VBScript
competed directly
with JavaScript,
but they never saw
implementation
outside Microsoft
browsers.

an attempt to unify the way malformed html documents were
rendered across the Web browsers, w3c acknowledged and doc-
umented this behavior as a part of the html5 specification [38,
sec. 8.2]. An example of a non-conforming html5 document and
its canonical interpretation is given in Figure 2.7.

Initially, html only comprised a mixture of logical and presen-
tation markup with fixed visual interpretation. This changed with
the specification of css, whichwas introduced byw3c in 1996. The
language enabled the specification of the visual properties for any
html element, which enabled the separation of document markup
and design, effectively eliminating the need for the presentation
markup.

During the same period, an initial version of a scripting lan-
guage called JavaScript [39] was drafted and incorporated into
Netscape Navigator 2.0—one of the contemporary leading web
browsers and a descendant of the original Mosaic browser. As a
part of a joint effort by Sun Microsystems and Netscape Com-
munications to bring the programming language of Java into
web browsers, JavaScript was supposed to complement Java ap-
plets [40]—a role it has since outgrown. Standardized in 1997 [39],
JavaScript blurred the line between static documents and inter-
active applications and remains the predominant client-side pro-
gramming language of the Web. However, since the support of
JavaScript by a Web browser is fully optional, it is considered a
good practice not to depend on JavaScript for the rendering of
html documents. In the case of interactive html applications,
this recommendation may be relaxed.

2.2.2 The Extensible Hypertext Markup Language
Ever since the release of xml in 1998, w3c entertained the idea of
turning html into an application of xml, rather than of sgml, as

Bold, <i>bold and italic, italic.</i>

Bold, <i>bold and italic, italic.</i>

Figure 2.7: The first line contains overlapping elements and, as
such, can't be a part of a valid html document. Nevertheless,
browsers should handle it identically to the second line.

30 CHAPTER 2. MARKUP

SO WHAT IS THIS ABOUT?

There is a continuing need to show the power of

<i>CSS</i>. The Zen Garden aims to excite, inspire,

and encourage participation. To begin, view some of the

existing designs in the list. Clicking on any one will

load the style sheet into this very page. The <i>HTML

</i> remains the same, the only thing that has changed

is the external <i>CSS</i> file. Yes, really.

Figure 2.8: An excerpt from the Web site of the css Zen Zarden
located at http://csszengarden.com. The document above was
created using the html presentation markup. The document be-
low achieves the same appearance by the combination of logical
markup and css.

<style>

body {

font-family: Verdana;

font-size: large;

} h1 {

font-size: x-large;

text-transform: uppercase;

} abbr {

font-style: italic;

}

</style>

<h1>So what is this about?</h1>

<p>There is a continuing need to show the power of

<abbr>CSS</abbr>. The Zen Garden aims to excite, inspire,

and encourage participation. To begin, view some of the

existing designs in the list. Clicking on any one will

load the style sheet into this very page. The

<abbr>HTML</abbr> remains the same, the only thing that

has changed is the external <abbr>CSS</abbr> file. Yes,

really.</p>

http://csszengarden.com

2.2. MARKUP ON THE WORLD WIDE WEB 31

The idea of a net-
work of machine-
readable data was
described by Tim
Berners-Lee in 2006
in the article Linked
Data [43].

exemplified by the working draft of Reformulating html in xml [41].
Unlike html parsers, whose acceptance of malformed content
makes them complex, xml parsers are required to strictly refuse
xml documents that aren't well-formed [28, Section 1.2, Termi-
nology], leading to architectural simplicity and decreased com-
putational requirements. As a result, reformulating html in xml
was suggested as a way to bring the Web to mobile, embedded,
and other devices limited in their computational resources and
to reduce the amount of malformed documents on the Web in
general. Other perceived advantages included the ability to use
xml tools for web documents and to include instances of other
xml applications—such as mathml and svg—directly into web
documents through xml namespaces.

The idea was brought to fruition in the xml application of the
eXtensible HyperText Markup Language (xhtml) [42]. However, the
supposed benefits proved to be too marginal to warrant migration
from html. The speed advantages of the simplified processing
were largely offset by the lack of support for incremental rendering,
since it is impossible to validate and render partially downloaded
xhtml documents and the advances in the area of mobile de-
vices made html processing sufficiently fast. The lack of ways to
provide alternative content for browsers that would not support
the xml applications instantiated in the xhtml documents also
reduced the usefulness of the xml namespaces in xhtml consid-
erably. As a result, xhtml has yet to succeed in replacing html
and remains a minority markup language on the Web.

2.2.3 The Semantic Web and Linked Data
TheWeb is based on the idea of a distributed and globally available
network of human knowledge. The languages of html, xhtml,
css and JavaScript form the foundation of the human-readable
parts of the Web, but are inadequate for creating a network of
machine-readable data that could be navigated by software agents.
Drawing from the research in the field of knowledge representa-
tion, w3c created the Resource Description Framework (rdf) [44] in
1999—a language for the description of resources on the Web.

An rdf document represents data as a set of triplets. Each
triplet comprises a predicate, a subject, and an object, where both
the predicate and the subject are specified as resources using ir is.

32 CHAPTER 2. MARKUP

A list of ontologies
that are fully doc-
umented, honor
the current best
practices, and

are supported by
various tools can
be found on the

w3c wiki at http:
//www.w3.org/wiki/

Good_Ontologies.

If the object of a triplet (𝑝, 𝑠, 𝑜) is also a resource, the triplet can be
interpreted as a subject 𝑠 being in a relation 𝑝 with the object 𝑜. If
the object is a literal value rather than a resource, the triplet can be
interpreted as a subject 𝑠 having a property 𝑝 with the value 𝑜.

Resources in rdf are specified via ir is to prevent naming colli-
sions in rdf documents created independently by distinct authors.
These ir is do not need to point to any existing web page, and—
beside the small set of standard resources specified within the
rdf specification—they carry no inherent meaning. In order to de-
scribe a set of resources, the relationships between them, and their
intended meaning in an rdf document, an extension of the set of
standard resources called rdf Schema [45] can be used. The result-
ing documents are called ontologies and can be used for automated
reasoning about rdf documents containing resources described by
the ontology. Some of thewell-known ontologies include the Dublin
Core (dc)—an ontology for the generic description of resources,
both digital and physical—, Friend Or A Foe (foaf)—an ontology
for the description of people and their social relationships—, or
the Music Ontology—an ontology for the description of entities
related to the music industry, such as albums, artists, tracks, and
events. More expressive standards for the creation of ontologies,
such as the Web Ontology Language (owl) [46], also exist.

rdf documents can be represented through many languages,
including xml [44], json for ld (json-ld) [47], Turtle [48], and
N-Triples [49]. Although rdf documents in any of these represen-
tations can be included in or linked to html and xhtml docu-
ments, this will often result in the undesirable duplication of data.
To prevent this, the language of rdf in attributes (rdfa) [50] makes
it possible to mark parts of the html or xhtml document as rdf
data. The usage of rdf in conjunction with html and xhtml is in-
tended to gradually obsolete the loosely-defined use of html and
xhtml attributes, the <meta> and <link> elements, and the css
class names to include additional machine-readable metadata into
the documents on theWeb—a technique known asmicroformatting.

2.3 Document Preparation Systems
Some of the existing markup languages are tied directly to spe-
cific Document Preparation Systems (dpses). These dpses can be

http://www.w3.org/wiki/Good_Ontologies
http://www.w3.org/wiki/Good_Ontologies
http://www.w3.org/wiki/Good_Ontologies

2.3. DOCUMENT PREPARATION SYSTEMS 33

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-

rdf-syntax-ns#"↪

xmlns:dc="http://purl.org/dc/terms/"

xmlns:foaf="http://xmlns.com/foaf/0.1/">

<rdf:Description

rdf:about="http://example.org/document.html">↪

<dc:title xml:lang="en">John's Web page</dc:title>

<dc:creator

rdf:resource="http://example.org/john-smith"/>↪

</rdf:Description>

<rdf:Description

rdf:about="http://example.org/john-smith">↪

<rdf:type rdf:resource="foaf:Person"/>

<foaf:name>John Smith</foaf:name>

</rdf:Description>

</rdf:RDF>

<http://example.org/document.html>

<http://purl.org/dc/terms/title> "John's Web page"@en↪

<http://example.org/document.html>

<http://purl.org/dc/terms/creator>

<http://example.org/john-smith>

↪

↪

<http://example.org/john-smith>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person>

↪

↪

<http://example.org/john-smith>

<http://xmlns.com/foaf/0.1/name> "John Smith"↪

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example.org/document.html>

dc:title "John's Web page"@en ;

dc:creator <http://example.org/john-smith> .

<http://example.org/john-smith>

a foaf:Person ;

foaf:name "John Smith" .

Figure 2.9: An example rdf document using the dc and foaf
ontologies in the languages of rdf/xml (john.rd, top), N-Triples
(john.nt, middle), and Turtle (john.ttl, bottom)

34 CHAPTER 2. MARKUP

<!DOCTYPE html>

<html lang="en">

<head>

<link rel="meta" type="application/rdf+xml"

href="john.rdf">

<link rel="meta" type="text/turtle" href="john.ttl">

<link rel="meta" type="application/n-triples"

href="john.nt">

<title>John's Web page</title>

</head>

<body>

Hi, I'm John Smith.

</body>

</html>

Figure 2.10: Above is an html document linked to the rdf doc-
ument from Figure 2.9. Below is the same html document with
the rdf data directly embedded using the rdfa language.

<!DOCTYPE html>

<html lang="en">

<head vocab="http://purl.org/dc/terms/"

about="http://example.org/document.html">

<title property="title" lang="en">John's Web

page</title>↪

<meta property="creator"

href="http://example.org/john-smith">

</head>

<body vocab="http://xmlns.com/foaf/0.1/"

about="http://example.org/john-smith"

typeof="Person">

Hi, I'm John Smith.

</body>

</html>

2.3. DOCUMENT PREPARATION SYSTEMS 35

http://example.org/document.html

"John's Web page"@en

dc:title

http://example.org/john-smith

foaf:Person
rdf:type

"John Smith"

foaf:name

foaf:creator

Figure 2.11: A graph of the rdf document in Figure 2.9

categorized into the batch-oriented, which process text files into
printable output documents on demand, and the interactive (also
What You See Is What You Get (wysiwyg)), which allow the user to
directly edit an approximation of the output document through
a visual editor. The price for the mild learning curve of interac-
tive dpses are the more primitive typesetting algorithms, which
need to be sufficiently fast to enable real-time user interaction, and
the reduced flexibility stemming from the usage of a Graphical
User Interface (gui), which, although often intuitive for simple
tasks, seldom matches the power of the markup languages used
by batch-oriented dpses.

2.3.1 Batch-oriented Systems
One of the archetypal batch-oriented dpses are troff, whose func-
tion is to produce output for general printers, and nroff, whose
function is to produce output for line printers and text terminals.
Both are proprietary software developed for the Unix operating
system at the beginning of 1970s by the American Telephone and
Telegraph corporation (at&t). An alternative to nroff and troff is
groff, which was developed as free software for the gnu is Not
Unix (gnu) project in 1980 by the members of the the Free Software
Movement (fsm). Groff combines the capabilities of both systems
and is used extensively for the markup of documentation in Unix
and Unix-like operating systems. The markup language of groff
combines presentation markup with programming constructs and
enables the definition of logical markup through user macros. The

http://example.org/document.html
http://example.org/john-smith

36 CHAPTER 2. MARKUP

The circumstances
that led to the cre-

ation of TEX and the
surrounding tools

are thoroughly doc-
umented in Digital

Typography [52].

standard macro packages for groff include man for the formatting
of documentation, me for the creation of research papers, and the
more recent mom for general typesetting tasks. Special markup in-
vokes preprocessors that can be used for the typesetting of tables,
equations, and vector graphics.

Another notable free batch-oriented dps is TEX, which was
developed in the 1970s by an American professor of computer
science Donald Knuth after he had received galley proofs for the
second volume of his monograph, the Art of Computer Programming,
and found the appearance of mathematical formulae distasteful.
As a result, the typesetting of mathematics is a central theme in
TEX, rather than an afterthought, which differentiates it from most
other dpses and which contributes to the massive popularity TEX
has enjoyed among academics. Much like in the case of troff and
its derivatives, the language of TEX contains only typographic and
programming primitives, but the creation of logical markup is
possible through user macros. A popular TEX macro package that
enables the creation of various types of documentswith just logical
markup is LATEX: the standard markup language for academic and
technical documents.

2.3.2 Interactive Systems
Interactive dpses come in two distinct flavors.Word processors are
the digital progeny of the typewriter machine, whose output docu-
ments served as manuscripts to be typeset by a typographer. With
the advent of personal computing and the Web, self-publishing
became more affordable to the general public and modern word
processors can be used not only to write but also to design and
typeset documents, although the offered functionally is typically
limited to ensure ease of use. This concern is not shared by Desk-
Top Publishing (dtp) software, which provides refined control over
the resulting page layout and the typesetting at the expense of a
steeper learning curve.

Most interactive dpses will provide a means to mark up sec-
tions of text. Presentation markup enables direct changes to the
design, whereas logical markup enables the classification of sec-
tions of text with the ability to set up the design of each class later
on. This decouples writing and markup from design and makes it
easy to consistently change the design of an entire document.

2.3. DOCUMENT PREPARATION SYSTEMS 37

The Cask of Amontillado
by

The thousand injuries of Fortunato I had borne as I best
could, but when he ventured upon insult I vowed
revenge. You, who so well know the nature of my soul,

will not suppose, however, that gave utterance to a threat. At
length I would be avenged; this was a point def nitely settled—
but the very def nitiveness with which it was resolved precluded
the idea of risk. I must not only punish but punish with
impunity. A wrong is unredressed when retribution overtakes its
redresser.

-1-

.TITLE "The Cask of Amontillado

.AUTHOR "Edgar Allan Poe

.PRINTSTYLE TYPESET

.PAGE 6i 9i .75i .75i .75i .75i

.START

.PP

.DROPCAP T 3

he thousand injuries of Fortunato I had borne as I best

could, but when he ventured upon insult I vowed revenge.

You, who so well know the nature of my soul, will not

suppose, however, that gave utterance to a threat.

[IT]At length[PREV] I would be avenged; this was a

point definitely settled\[em]but the very definitiveness

with which it was resolved precluded the idea of risk. I

must not only punish but punish with impunity. A wrong is

unredressed when retribution overtakes its redresser.

Figure 2.12: An excerpt from the beginning of Edgar Allan Poe's
Cask of Amontillado as a text marked up using the mom macro
package of groff (below) and the output document (above). The
marked up text was borrowed from the web page of mom [51].

38 CHAPTER 2. MARKUP

% Page geometry

\pdfpagewidth=6in \pdfpageheight=9in

% Page dimensions

\hsize=\dimexpr\pdfpagewidth-1.5in

\vsize=\dimexpr\pdfpageheight-1.5in

\baselineskip=16.8pt

\hoffset=-.25in \voffset=-.25in

% Fonts

\font\rm=ptmr8t at 12.5pt\rm \font\bigbf=ptmb8t at 16pt

\font\dropcap=ptmr8t at 62pt \font\it=ptmri8r at 12.5pt

% Logical markup definition

\def\title#1{{\bigbf\centerline{#1}}}

\def\author#1{{\it\centerline{by}\centerline{#1}}%

\vskip 3.9em}

\def\chapter#1{\noindent\smash{\hskip0.1ex\lower5.8ex%

\hbox{\llap{\dropcap#1}}\hskip-0.3ex}

\parshape=4 3em\dimexpr\hsize-3em 3.28em

\dimexpr\hsize-3.28em 3.28em

\dimexpr\hsize-3.28em 0em\hsize}

% The document

\title{The Cask of Amontillado}

\author{Edgar Allan Poe}

\chapter The thousand injuries of Fortunato I had borne

as I best could, but when he ventured upon insult I vowed

revenge. You, who so well know the nature of my soul,

will not suppose, however, that gave utterance to a

threat. {\it At length} I would be avenged; this was a

point definitely settled---but the very definitiveness

with which it was resolved precluded the idea of risk. I

must not only punish but punish with impunity. A wrong is

unredressed when retribution overtakes its redresser.\bye

Figure 2.13: The document from Figure 2.12 reformulated in TEX
using plain TEX macros and the primitives of 𝜀-TEX and pdfTEX

2.4. LIGHTWEIGHT MARKUP LANGUAGES 39

Figure 2.14: Logical markup in the interactive dpses of Scribus
(left), Microsoft Word (top), Adobe InDesign (bottom left) and
Apache OpenOffice (bottom right)

2.4 Lightweight Markup Languages
Parallel to the heavy-duty applications of sgml and xml, there
runs a vein of markup languages that give priority to unobtru-
siveness and legibility over raw expressive power. Rooted in the
reality of computer text terminals with limited formatting capa-
bilities, lightweight markup languages leverage punctuation and in-
dentation to produce comparatively weak and domain-specific,
but also humane, highly intuitive, and often profoundly beautiful
markup that is easy to both read and write. Examples of light-
weight markup languages include Markdown, Creole, AsciiDoc,
MakeDoc, Setext, and Wikicode. Lightweight markup languages
are typically supplemented by tools that enable the conversion to
more general markup languages, such as html. The more pop-
ular lightweight markup languages come in various flavors that
represent their use cases.

Chapter 3

Design

After a manuscript has been written and marked up, it is time to
create a visual system that will emphasize the internal structure
and the character of the document. In print design, this involves
the selection of one or several typefaces that are well-suited to
both the document and each other, the design and the positioning
of the structural elements of the document—such as headings,
tables, figures, and lists, and the choice of the paper size and the
page layout. In web design and multi-target publishing, several
visual systems may have to be created to accommodate for various
display devices.

3.1 Fonts
When choosing typefaces for a document, legibility should be of
foremost concern. The body text should be set with a typeface at a
size of at least 10 pt, if the document is aimed at adult readers, or
12 pt, if visually impaired readers and elementary-school students
are a part of the audience. [53, para. 13–15]. The target medium
also needs to be taken into consideration. A faithful copy of a type-
face designed for the letterpress will look lighter than originally
intended when printed digitally. This may hamper its legibility, if
it contains hairline strokes [54, sec. 6.1.2]. In printed documents,
typefaces with serifs are more familiar to the reader and therefore
more suitable for long-distance reading than their sans serif coun-

42 CHAPTER 3. DESIGN

terparts. At low-resolution screens, however, simple low-contrast
typefaces with slab or no serifs will often yield the best result.

A typeface should also contain all the letters and symbols that
will appear in the document. If the manuscript is multilingual and
contains passages in both Latin and non-Latin writing systems, it
may be necessary to combine several typefaces. If the multilingual
manuscript only contains Latin characters, but several accented
characters are missing from the body text typeface, they may be
constructed by combining the body text typeface with diacriti-
cal marks from another font family. If certain punctuation marks
and other symbols are missing from the body text typeface, they
may likewise be borrowed from other font families. The typefaces
should be consonant in their spirit and structure, unless the text
would benefit from the dissonance. [54, sec. 5.1.2]

Beside the body text typeface, several other typefaces may ap-
pear in a document—a bold face, an italic face, or perhaps several
sizes of the body text typeface for use in the structural elements.
The natural instinct is to pick these typefaces from a single font
family, but some families may not offer all typefaces that the de-
sign requires. In these cases, the typefaces may again have to be
borrowed from other font families.

3.2 Structural Elements

3.2.1 Paragraphs and Stanzas
As the base units of linguistic thought in prose, paragraphs split
the text into coherent portions ready for consumption. A line in a
paragraph of the body text should be 45–75 characters long on a
single-column page or 40–50 characters long on a multi-column
page and justified (spread horizontally to fit the column width).
Extended passages of lines wider than 80 characters strain the
eye of the reader, whereas justified lines that are too narrow to
accommodate 40 characters may make the word spacing entirely
too loose. In the latter case, the text should be set ragged instead,
as seen in the sidenotes throughout this book [54, sec. 2.1.2].

Vertically, the lines of a paragraph should be separated by
approximately twenty to forty-five percent of the typeface size [55].
If the size of the body text typeface is 10 pt, then the body text

3.2. STRUCTURAL ELEMENTS 43

ThesecondfunctionofSoul–knowing–wasnotatfirstdistinguishedfrommotion.
Aristotle says,φαμὲν γὰρ τὴν ψυχὴν λυπεῖσθαι χαίρειν, θαρρεῖν φοβεῖσθαι,
ἔτι δὲ ὸργίζεσθαί τε καὶ αἰσθάνεσθαι καὶ διανοεῖσθαι. ταῦτα δὲ πάντα

κινήσεις εἶναι δοκοῦσιν. ὅθεν οἰηθείη τις ἂν αὐτὴν κινεῖσθαι. “The soul is
said to feel pain and joy, confidence and fear, and again to be angry, to perceive, and to
think; and all these states are held to bemovements, whichmight lead one to suppose
that soul itself ismoved.”

1

\documentclass[11pt]{article}

\usepackage{fontspec, leading, newunicodechar}

\usepackage[Latin, Greek]{ucharclasses}

\setTransitionsForLatin{%

\fontspec{AlegreyaSans-Regular.ttf}[Ligatures=TeX]}{}

\setTransitionsForGreek{%

\fontspec{GFSNeohellenic.otf}[Scale=1.2, WordSpace=0.5,

Ligatures=TeX]}{}↪

\newunicodechar{·}{\raisebox{.8ex}{.}}

\frenchspacing

\leading{14pt}

\begin{document}

The second function of Soul -- knowing -- was not at

first distinguished from motion. Aristotle says, φαμὲν

γὰρ τὴν ψυχὴν λυπεῖσθαι χαίρειν, θαρρεῖν φοβεῖσθαι, ἔτι

δὲ ὸργίζεσθαί τε καὶ αἰσθάνεσθαι καὶ διανοεῖσθαι· ταῦτα

δὲ πάντα κινήσεις εἶναι δοκοῦσιν. ὅθεν οἰηθείη τις ἂν

αὐτὴν κινεῖσθαι.

``The soul is said to feel pain and joy, confidence and

fear, and again to be angry, to perceive, and to think;

and all these states are held to be movements, which

might lead one to suppose that soul itself is moved.''

\end{document}

Figure 3.1: An excerpt from F. M. Cornford's From Religion to Philos-
ophy: A Study in the Origins of Western Speculation as a text marked
up in TEX using LATEX macros and the primitives of XƎTEX (below)
and the output document (above). Note that two typefaces were
used: the regular typeface of Alegreya Sans at the size of 11 pt for
the Latin characters and the regular typeface of GFS Neohellenic
at the size of 13.2 pt for the Greek characters.

44 CHAPTER 3. DESIGN

<style>

@font-face {

font-family: "Alegreya Sans";

src: url("AlegreyaSans-Regular.ttf");

format("truetype");↪

unicode-range: U+00-24F, U+1E00-1EFF, U+2000-206F,

U+2C60-2C7F, U+A720-A7FF, U+FB00-FB4F;↪

} @font-face {

font-family: "GFS Neohellenic";

src: url("GFSNeohellenic.otf"); format("opentype");

unicode-range: U+2C80-2CFF, U+370-3FF, U+1F00-1FFF,

U+102E0-102FF;↪

} p {

font-family: "Alegreya Sans", "GFS Neohellenic",

sans-serif;↪

line-height: 14pt;

} [lang="en"] {

font-size: 11pt;

} [lang="gr"] {

font-size: 13.2pt;

}

</style>

<p>The second function of Soul –

knowing – was not at first distinguished from motion.

Aristotle says, φαμὲν γὰρ τὴν

ψυχὴν λυπεῖσθαι χαίρειν, θαρρεῖν φοβεῖσθαι, ἔτι δὲ

ὸργίζεσθαί τε καὶ αἰσθάνεσθαι καὶ διανοεῖσθαι· ταῦτα δὲ

πάντα κινήσεις εἶναι δοκοῦσιν. ὅθεν οἰηθείη τις ἂν αὐτὴν

κινεῖσθαι. “The soul is said to

feel pain and joy, confidence and fear, and again to be

angry, to perceive, and to think; and all these states

are held to be movements, which might lead one to suppose

that soul itself is moved.”</p>

Figure 3.2: The document from Figure 3.1 reformulated in html5
and css3

3.2. STRUCTURAL ELEMENTS 45

line height (also known as the leading) would be between 12 and
14.5 pt, adding 1 to 2.25 pt of lead above and below each line. As a
general guideline, dark and bulky typefaces require more leading,
as do texts riddled with accents, full capital letters, subscripts, and
superscripts [54, sec. 2.2.1]. The body text of this book is set in
10 pt Palatino with the leading of 12 pt. To allow for such minimal
leading, all acronyms and other strings of upper-case letters are
set as small capitals (capital letters whose height matches the lower
case).

Two adjacent paragraphs should be visibly separated without
distracting the reader from the text. A predominant method is to
indent the initial line of a paragraph with one half (1 en) to three
times (3 em) the typeface size. The indent is unnecessary when
there is no ambiguity—such as in the first paragraph following a
heading. [54, sec. 2.3]

If the margins are ample, outdented paragraphs are an intriguing
option as well. ¡ Paragraphs can also be separated by graphical
symbols, such as pilcrows, bullets, or boxes. A plain horizon-
tal space that is at least 3 em wide can likewise act as a paragraph
separator. [56, ch. 2, p. 16]
Block paragraphs exchange indentation and horizontal separators
for additional vertical space above and below the paragraph. In
justified block paragraphs, this space can be omitted as well, al-
though the typesetter then has to manually ensure that the last
line of each paragraph offers enough horizontal space to act as
a separator. In short documents and limited spans of text, block
paragraphs are an attractive option. [54, sec. 2.3.2]

Being the verse counterpart to the paragraph, the stanza is a
collection of lines rather than of sentences. Due to this structural
difference, stanzas are typically only justified, when the individual
lines are long enough to fill up the column, and ragged otherwise.
Much like in the case of prose, short-form poetry benefits from
having the stanzas set in block paragraph style.

3.2.2 Headings
Another fundamental structural element is the heading. The func-
tion of a heading is to delimit and name the individual sections of
a document. To alleviate navigation, headings should be a promi-
nent presence on a page. This can be achieved by using a larger

46 CHAPTER 3. DESIGN

Sizes in inches Page proportions
A4 8.27 × 11.7 2 ∶ √2 1.41421
B5 6.93 × 9.84 1 ∶ √2 0.707
Letter 8 1

2 × 11 1 ∶ 1.294 1.2941

Table 3.1: An overview of commonpaper sizes used for commercial
and industrial printing

This is a side-
note. Sidenotes
enliven the page
and are easy for

the reader to find.

variant of the body text typeface or by including the text of the lat-
est heading in the margin or the header of the page [54, sec. 4.2.1],
as seen throughout this book.

The hierarchy of the headings can be expressed through the
variation of typefaces, indentation, alignment and numbering,
although alternating the size of the body text typeface is sufficient
for many types of documents. In documents that are bound in
codex form and read two pages at a time, the height of headings
should be a whole multiple of the line height of the body text,
so that the headings do not disrupt the alignment of lines on the
facing pages. [53, para. 33]

3.2.3 Tables and Lists
Tables and lists are structural elements that should fit seamlessly
into the surrounding text and avoid unnecessary visual clutter. Use
the same typeface the surrounding text does, treat the columns
of tables the same way you treat columns in the text, and keep
the amount of rules, boxes, dots, and extraneous spacing to a bare
minimum (see Table 3.1). [54, sec. 2.1.10 and 4.4]

3.2.4 Notes
Notes provide commentary on a specified passage of the main text
and can take three different forms:

1 Sidenotes are displayed in the horizontal margins next to the rele-
vant passage of themain text, as seen throughout this book. Unless
the horizontal margins are very wide, sidenotes are unsuitable
for the inclusion of bibliographical references—a common use for
notes in academic writing.

3.2. STRUCTURAL ELEMENTS 47

2 Footnotes are delegated to the bottom of the page and linked to the
relevant passage of the main text through symbols or superscript
numbers.1 Compared to side notes, they are more difficult for the
reader to find. Footnotes should align with the bottom of the text
block, not stick out into the bottom margin. [53, para. 48]

3 Endnotes are delegated to the end of a section or the entire doc-
ument and are linked to the relevant passage of the body text
through superscript numbers. They are the easiest of the three to
typeset, but also the hardest for the reader to find.

Notes are typically typeset in sizes from 8pt up to the body text
typeface size depending on their frequency, importance, and aver-
age length. [54, sec. 4.3] If several categories of notes are present
in the document, it may be desirable to give each a different form.

3.2.5 Quotations
Quotations repeat what has already been expressed somewhere
else before and can take two different forms: [54, sec. 5.4]

1 Run-in quotations are included directly into the paragraph and
set off from the surrounding text using quotation marks in accor-
dance with the orthographic rules on the use of punctuation in
the language of the paragraph: “Jesters do oft prove prophets.”
From the designer's viewpoint, run-in quotations require no spe-
cial treatment, although it is crucial that the body text typeface
contains the required quotation marks.

2 Block quotations are set as block paragraphs that are clearly sepa-
rated from the surrounding text. This involves adding a vertical
space above and below the block paragraphs and optionally also
changing the typeface, its size, or the indentation of the para-
graphs: [54, sec. 2.3.3]

This is the excellent foppery of the world that when we are sick in for-
tune—often the surfeit of our own behavior—we make guilty of our
disasters the sun, the moon, and the stars, as if we were villains by ne-
cessity, fools by heavenly compulsion, knaves, thieves, and treachers by
spherical predominance, drunkards, liars, and adulterers by an enforced

1 This is a footnote. Due to their width, footnotes can comfortably accommodate full
bibliographical references, which makes them popular in academic writing.

A footnote can also contain multiple paragraphs of text, although long foot-
notes are tedious to read if the size of the typeface is small. [54, sec. 4.3.1]

48 CHAPTER 3. DESIGN

obedience of planetary influence, and all that we are evil in by a divine
thrusting-on. An admirable evasion of whoremaster man, to lay his goat-
ish disposition to the charge of a star!

—William Shakespeare, King Lear

Block quotations are ideal for longer quotations and for quotations
that should carry more weight that run-in quotations.

3.3 Page Layout
The page consists of a textblock surrounded by margins. The text
width area is largely determined by the number of columns and
the body text size—as described in Section 3.2.1—as well as by
our plans for the horizontal margins. A margin containing an
occasional sidenote will require less space that a margin ripe with
photographs, tables, and diagrams.

The vertical margins may contain additional navigational aids,
such as the page numbers and running headers in this book. [54,
sec. 8.5.2]

In print design—and wherever else the page height is fixed—
we need to also decide on the text height. The text height needs to
be a multiple of the body text line height, so that it is possible to
completely fill the text block with text. It is typical to derive the
text height from the text width to achieve proportions that work
well with the proportions of the page. [54, sec. 8.4.2]

3.4 Color
Three types of cone cells—S, M, and L—exist in the human eye,
and each type is sensitive to a different range of the visible light.
The perception of the visible light is what is referred to as color. In
this section, we will briefly overview the color theory as well as
general guidelines with respect to color scheme design.

3.4.1 Theory
In 1932, the International Commission on Illumination (Commission
Internationale de l'Éclairage, cie) defined the cie 𝑋𝑌𝑍 color space,

3.4. COLOR 49

Figure 3.3: The additive𝑅𝐺𝐵 colormodel (left), and the subtractive
𝐶𝑀𝑌 color model (right)

For an approachable
introduction to the
color theory, see
the Reproduction of
Colour by Hunt [58].
For a dauntingly
complete treatment
of the art and sci-
ence of color, see
Günther and Styles'
Color Science [59].

which specifies howa Spectral Power Distribution (spd) of the visible
light relates to a set of three parameters (𝑋, 𝑌, and 𝑍) that specify
a color. [57] Since the parameter 𝑌 is a measure of the luminance of
a color, a two-dimensional color space called the cie 𝑥𝑦𝑌 color space
can by derived from cie 𝑋𝑌𝑍 by disregarding the luminosity. A
plot, where a point (𝑥, 𝑦) corresponds to a color in cie 𝑥𝑦𝑌, is called
a chromacity diagram (see Figure 3.4). In theory, we can directly
use the cie color spaces to specify colors. In practice, there exist
task-specific color spaces.

Electronic screens use red, green, and blue sub-pixels. This
gives rise to the additive 𝑅𝐺𝐵 color model (see Figure 3.3). An 𝑅𝐺𝐵
color space is then specified by the chromacities of its primary colors
(primaries), and by the white point. The extent of the colors that can
be represented by an 𝑅𝐺𝐵 color space (its gamut) can be plotted
in the chromacity diagram as a triangle whose vertices are the
chromacities of the primaries. Standard 𝑅𝐺𝐵 color spaces include
sRGB, Adobe RGB 1998, and ProPhoto RGB (see Figure 3.4). There
exists no single standard white point or primaries; if only the 𝑅𝐺𝐵
coordinates of a color are given, the color cannot be accurately
reproduced. For this reason, digital images often include an icc
color profile, which fully specifies a color space.

Mixing cyan, magenta, and yellow inks gives rise to the sub-
tractive𝐶𝑀𝑌𝐾 color model. Although three colors (𝐶, 𝑀, and𝑌) are

50 CHAPTER 3. DESIGN

460

480

500

520

540

560

580

600

620

x
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ProPhoto RGB

Adobe RGB 1998

sRGB
Colormatch RGB

SWOP CMYK

D65 white point

ProPhoto RGB

Adobe RGB 1998

sRGB
Colormatch RGB

SWOP CMYK

D65 white point

ProPhoto RGB

Adobe RGB 1998

sRGB
Colormatch RGB

SWOP CMYK

D65 white point

Figure 3.4: A cie 𝑥𝑦𝑌 chromacity diagram, where the shark-fin-
shaped spectral locus corresponds to a narrow-band spd with
power at just a single wavelength swept across the visible light
(380–700 nm). Source: BenRG and cmglee atWikimedia Commons.

3.4. COLOR 51

sufficient to describe a color, a black ink (𝐾) is less expensive and
driesmore quickly than a combination of three colored inks.White
color is provided by the paper. Similarly to the 𝑅𝐺𝐵model, 𝐶𝑀𝑌𝐾
coordinates specify a color only if we specify a 𝐶𝑀𝑌𝐾 color space
using an icc color profile. For printing text, it is often advanta-
geous not to specify a color profile, so that no inks other than 𝐾 are
introduced in a color conversion. When an accurate reproduction of
a color is desired, a color model must be specified.

3.4.2 Schemes
In both print and web design, it is perfectly reasonable to use
either just the combination of black and white or shades of gray. A
secondary colormay be introduced to enliven the page if necessary;
red has historically been used for this purpose (see Figure 3.5).
More than a single hue of color may be introduced, although each
additional one makes it more difficult to establish a visual system
that is intelligible to the reader.

You should only use colored typefaces for emphasis, not for
the body text, and on backgrounds that are white or of sufficient
contrast with the typeface color. Distinct colors should stay dis-
tinct even for the color-blind reader, unless the lack of distinction
between the colors does not impair understanding.

Figure 3.5: An excerpt from the Latin Vulgate Bible printed by the
German goldsmith, printer, and publisher Anton Koberger in 1487

Bibliography

[1] Mary Brandel. ``1963: The debut of asci i''. In: Computer-
world (July 1999). url: http://edition.cnn.com/TECH/
computing/9907/06/1963.idg (visited on 09/06/2015) (cit.
on p. 5).

[2] asa Sectional Committee on Computers and Information
Processing. American Standard Code for Information Inter-
change. X 3.4-1963. 10 East 40th Street, New York 16, ny,
usa: the American Standard Association, June 1963. url:
http : / / worldpowersystems . com / J / codes / X3 . 4 - 1963/

(visited on 01/28/2015) (cit. on p. 5).
[3] iso tc97/sc2. Information technology – iso 7-bit coded char-

acter set for information interchange. iso 646:1972. Geneva,
Switzerland: the International Organization for Standard-
ization, 1972 (cit. on pp. 5, 7).

[4] asa Sectional Committee on Computers and Information
Processing. American Standard Code for Information Inter-
change. X 3.4-1986. 10 East 40th Street, New York 16, ny,
usa: the American Standard Association, June 1986 (cit. on
p. 6).

[5] Unicode Consortium. the Unicode Standard, Version 1.0. Vol. 1.
Reading, ma, usa: Addison-Wesley Developers Press, Oct.
1991. isbn: 0201567881 (cit. on p. 8).

[6] Unicode Consortium. the Unicode Standard, Version 1.0. Vol. 2.
Reading, ma, usa: Addison-Wesley Developers Press, June
1992. isbn: 0201608456 (cit. on p. 8).

http://edition.cnn.com/TECH/computing/9907/06/1963.idg
http://edition.cnn.com/TECH/computing/9907/06/1963.idg
http://worldpowersystems.com/J/codes/X3.4-1963/

54 BIBLIOGRAPHY

[7] iso/iec jtc1/sc2. Information technology – the Universal
multiple-octet coded Character Set (ucs) – Part 1: Architecture
and Basic Multilingual Plane. iso/iec 10646-1:1993. Geneva,
Switzerland: the International Organization for Standard-
ization, May 1993 (cit. on p. 8).

[8] iso/iec jtc1/sc2. Transformation Format for 16 planes of
group 00 (utf-16). iso/iec 10646-1:1993/Amd 1:1996. Ge-
neva, Switzerland: the International Organization for Stan-
dardization, Oct. 1996 (cit. on p. 8).

[9] iso/iec jtc1/sc2. ucs Transformation Format 8 (utf-8).
iso/iec 10646-1:1993/Amd 2:1996. Geneva, Switzerland:
the International Organization for Standardization, Oct.
1996 (cit. on p. 8).

[10] Unicode Consortium. the Unicode Standard, Version 9.0 – Core
Specification. Tech. rep. Mountain View, ca, usa, July 2016.
url: http://www.unicode.org/versions/Unicode9.0.0/
UnicodeStandard-9.0.pdf (visited on 09/17/2015) (cit. on
pp. 8–10).

[11] Q-Success. Usage of character encodings for websites. url:
http://w3techs.com/technologies/overview/character_

encoding/all (visited on 09/10/2015) (cit. on p. 9).
[12] Unicode Consortium. Unicode Technical Standard #10, Version

9.0.0: Unicode Collation Algorithm. Tech. rep. May 2016. url:
http://www.unicode.org/reports/tr10/tr10-34.html

(visited on 09/17/2016) (cit. on p. 10).
[13] Unicode Consortium. Unicode cldr Project. Tech. rep. url:

http://cldr.unicode.org (visited on 09/17/2016) (cit. on
p. 10).

[14] iso tc171/sc2. Document management – Portable document
format. iso 32000:2008. Geneva, Switzerland: the Interna-
tional Organization for Standardization, July 2008 (cit. on
p. 13).

[15] iso/iec jtc1/sc34. Document description and processing lan-
guages – Office Open XML File Formats. iso/iec 29500:2012.
Geneva, Switzerland: the International Organization for
Standardization, Oct. 2012 (cit. on p. 13).

http://www.unicode.org/versions/Unicode9.0.0/UnicodeStandard-9.0.pdf
http://www.unicode.org/versions/Unicode9.0.0/UnicodeStandard-9.0.pdf
http://w3techs.com/technologies/overview/character_encoding/all
http://w3techs.com/technologies/overview/character_encoding/all
http://www.unicode.org/reports/tr10/tr10-34.html
http://cldr.unicode.org

BIBLIOGRAPHY 55

[16] iso/iec jtc1/sc34. Information technology – Open Document
Format for Office Applications (OpenDocument) v1.0. iso/iec
26300:2006. Geneva, Switzerland: the International Organi-
zation for Standardization, Dec. 2006 (cit. on p. 13).

[17] Noam Chomsky. ``Three models for the description of lan-
guage''. In: Information Theory, IEEE Transactions on 2.3 (1956),
pp. 113–124 (cit. on p. 14).

[18] iso/iec jtc1/sc22. Information technology – the Portable Op-
erating System Interface – Part 2: Shell and Utilities. iso/iec
9945-2:1993. Geneva, Switzerland: the International Organi-
zation for Standardization, Dec. 1993 (cit. on p. 14).

[19] Jeffrey E. F. Friedl. Mastering Regular Expressions. 3rd ed.
O'Reilly Media, 2006, p. 544. isbn: 9780596528126 (cit. on
p. 14).

[20] Unicode Consortium. Unicode Technical Standard #18, Version
17: Unicode Regular Expressions. Tech. rep. Nov. 2013. url:
http://www.unicode.org/reports/tr18/tr18-17.html

(visited on 09/26/2015) (cit. on p. 16).
[21] Dale Dougherty and Arnold Robbins. Sed & awk. Second

Edition. O'Reilly Media, 1997. isbn: 1565922255. url: http:
/ / docstore . mik . ua / orelly / unix / sedawk/ (visited on
09/26/2015) (cit. on p. 16).

[22] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael
Pilato. Version Control with Subversion. O'Reilly, 2002. url:
http://svnbook.red-bean.com/ (visited on 09/26/2015)
(cit. on p. 17).

[23] Charles F. Goldfarb. ``the Roots of sgml – A Personal Rec-
ollection''. In: (1996). url: http://www.sgmlsource.com/
history/roots.htm (visited on 07/29/2015) (cit. on p. 22).

[24] Charles F. Goldfarb. ``sgml: The Reason Why and the First
PublishedHint''. In: Journal of the American Society for Informa-
tion Science 48 (7 July 1997). url: http://www.sgmlsource.
com/history/jasis.htm (visited on 07/29/2015) (cit. on
p. 22).

[25] Charles F. Goldfarb. ``Introduction to Generalized Markup''.
In: (1981). url: http : / / www . sgmlsource . com / history /
AnnexA.htm (visited on 07/29/2015) (cit. on p. 22).

http://www.unicode.org/reports/tr18/tr18-17.html
http://docstore.mik.ua/orelly/unix/sedawk/
http://docstore.mik.ua/orelly/unix/sedawk/
http://svnbook.red-bean.com/
http://www.sgmlsource.com/history/roots.htm
http://www.sgmlsource.com/history/roots.htm
http://www.sgmlsource.com/history/jasis.htm
http://www.sgmlsource.com/history/jasis.htm
http://www.sgmlsource.com/history/AnnexA.htm
http://www.sgmlsource.com/history/AnnexA.htm

56 BIBLIOGRAPHY

[26] iso/iecjtc1/sc34. Information processing – Text and office sys-
tems – Standard Generalized Markup Language (sgml). iso/iec
8879:1986. Geneva, Switzerland: the International Organi-
zation for Standardization, Oct. 1986 (cit. on p. 22).

[27] Charles F. Goldfarb. the sgml Handbook. New York, NY, USA:
Oxford University Press, Inc., 1990. isbn: 9780198537373
(cit. on p. 22).

[28] Jean Paoli, Tim Bray, and Michael Sperberg-McQueen. Ex-
tensible Markup Language (xml) 1.0. w3c Recommendation.
w3c, Feb. 1998. url: http://www.w3.org/TR/1998/REC-
xml-19980210 (visited on 07/31/2015) (cit. on pp. 23, 31).

[29] iso/iec jtc1/sc18/wg8. Proposed TC for Web sgml Adap-
tations for sgml. iso/iec N1929. the International Organi-
zation for Standardization, June 1997. url: http://xml.
coverpages.org/wg8-n1929-g.html (visited on 07/31/2015)
(cit. on p. 23).

[30] Håkon Wium Lie and Bert Bos. Cascading Style Sheets, level 1.
Recommendation. w3c, Dec. 1996. url: http://www.w3.
org/TR/REC-CSS1-961217 (visited on 07/31/2015) (cit. on
pp. 23, 29).

[31] C. M. Sperberg-McQueen and Claus Huitfeldt. ``goddag:
A Data Structure for Overlapping Hierarchies''. In: Digital
Documents: Systems and Principles: 8th International Conference
on Digital Documents and Electronic Publishing, DDEP 2000,
5th International Workshop on the Principles of Digital Document
Processing, PODDP 2000, Munich, Germany, September 13-15,
2000. Revised Papers. Ed. by Peter King and Ethan V. Mun-
son. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 139–160. isbn: 9783540399162. doi: 10.1007/978-3-
540-39916-2_12 (cit. on p. 27).

[32] TimBray, DaveHollander, andAndrewLayman.Namespaces
in xml. w3c Recommendation. w3c, Jan. 1999. url: http:
//www.w3.org/TR/1999/REC-xml-names-19990114/ (visited
on 08/21/2015) (cit. on p. 27).

[33] M. Duerst. the Internationalized Resource Identifiers (iris) . rfc
3987. rfc Editor, Jan. 2005. url: http://tools.ietf.org/
html/rfc3987 (visited on 08/31/2015) (cit. on p. 27).

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://xml.coverpages.org/wg8-n1929-g.html
http://xml.coverpages.org/wg8-n1929-g.html
http://www.w3.org/TR/REC-CSS1-961217
http://www.w3.org/TR/REC-CSS1-961217
http://dx.doi.org/10.1007/978-3-540-39916-2_12
http://dx.doi.org/10.1007/978-3-540-39916-2_12
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc3987

BIBLIOGRAPHY 57

[34] Norman Walsh. DocBook 5: The Definitive Guide. Apr. 2010.
url: http://www.docbook.org/tdg/en/html/docbook.html
(visited on 08/18/2015) (cit. on p. 28).

[35] Tim Berners-Lee. Information Management: A Proposal. Tech.
rep. Mar. 1989. url: http://www.w3.org/History/1989/
proposal.html (visited on 08/31/2015) (cit. on p. 28).

[36] T. Berners-Lee. Hypertext Markup Language – 2.0. rfc 1866.
rfc Editor, Nov. 1995. url: http://tools.ietf.org/html/
rfc1866 (visited on 07/31/2015) (cit. on p. 28).

[37] Jon Postel. DoD standard Transmission Control Protocol. rfc
761. rfc Editor, Jan. 1980. url: http://tools.ietf.org/
html/rfc761 (visited on 09/16/2016) (cit. on p. 28).

[38] Ian Hickson et al. html5: A vocabulary and associated apis for
html and xhtml. Recommendation. w3c, Oct. 2014. url:
http://www.w3.org/TR/2014/REC-html5-20141028/ (vis-
ited on 07/31/2015) (cit. on p. 29).

[39] ecma International. Standard ecma-262 - ecmaScript Lan-
guage Specification. Tech. rep. June 1997. url: http://www.
ecma-international.org/publications/files/ECMA-ST-

ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf

(visited on 07/31/2015) (cit. on p. 29).
[40] Netscape Communications. Netscape and Sun announce Java-

Script, the open, cross-platform object scripting language for en-
terprise networks and the Internet. Dec. 1995. url: http://wp.
netscape.com/newsref/pr/newsrelease67.html (visited on
02/13/2008) (cit. on p. 29).

[41] Dave Raggett et al. Reformulating html in xml. w3c Recom-
mendation. w3c, Dec. 1998. url: http://www.w3.org/TR/
1998/WD-html-in-xml-19981205/ (visited on 08/20/2015)
(cit. on p. 31).

[42] Steven Pemberton et al. xhtml™ 1.0: The Extensible HyperText
Markup Language. w3c Recommendation. w3c, Jan. 2000.
url: http://www.w3.org/TR/2000/REC-xhtml1-20000126/
(visited on 08/20/2015) (cit. on p. 31).

[43] T. Berners-Lee. Linked Data. Tech. rep. 2006. url: https:
//www.w3.org/DesignIssues/LinkedData.html (visited on
09/17/2016) (cit. on p. 31).

http://www.docbook.org/tdg/en/html/docbook.html
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://tools.ietf.org/html/rfc1866
http://tools.ietf.org/html/rfc1866
http://tools.ietf.org/html/rfc761
http://tools.ietf.org/html/rfc761
http://www.w3.org/TR/2014/REC-html5-20141028/
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://wp.netscape.com/newsref/pr/newsrelease67.html
http://wp.netscape.com/newsref/pr/newsrelease67.html
http://www.w3.org/TR/1998/WD-html-in-xml-19981205/
http://www.w3.org/TR/1998/WD-html-in-xml-19981205/
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

58 BIBLIOGRAPHY

[44] Ora Lassila and Ralph R. Swick. Resource Description Frame-
work (rdf) Model and Syntax Specification. w3c Recommen-
dation. w3c, Feb. 1999. url: http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/ (visited on 08/18/2015) (cit. on
pp. 31, 32).

[45] Dan Brickley and R. V. Guha. rdf Vocabulary Description
Language 1.0: rdf Schema. w3c Recommendation. w3c, Feb.
2004. url: http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/ (visited on 08/18/2015) (cit. on p. 32).

[46] Deborah L. McGuinness and Frank van Harmelen. owl Web
Ontology Language. w3c Recommendation. w3c, Feb. 2004.
url: http://www.w3.org/TR/2004/REC- owl- features-
20040210/ (visited on 08/18/2015) (cit. on p. 32).

[47] Dan Brickley and R. V. Guha. json-ld 1.0: A JSON-based
Serialization for Linked Data. w3c Recommendation. w3c,
Jan. 2014. url: http://www.w3.org/TR/2014/REC-json-ld-
20140116/ (visited on 08/19/2015) (cit. on p. 32).

[48] David Beckett et al. rdf 1.1 Turtle. w3c Recommendation.
w3c, Feb. 2014. url: http://www.w3.org/TR/2014/REC-
turtle-20140225/ (visited on 08/29/2015) (cit. on p. 32).

[49] David Beckett. rdf 1.1 N-Triples. w3c Recommendation.
w3c, Feb. 2014. url: http://www.w3.org/TR/2014/REC-n-
triples-20140225/ (visited on 08/19/2015) (cit. on p. 32).

[50] Ben Adida et al. rdfa in xhtml: Syntax and Processing. w3c
Recommendation. w3c, Oct. 2008. url: http://www.w3.
org / TR / 2008 / REC - rdfa - syntax - 20081014/ (visited on
08/19/2015) (cit. on p. 32).

[51] Peter Schaffter.What, exactly, is mom? 2015. url: http://www.
schaffter.ca/mom/mom-01.html (visited on 09/16/2016)
(cit. on p. 37).

[52] Donald Ervin Knuth. Digital Typography. The Center for
the Study of Language and Information Publications, 1998.
isbn: 9780387982694 (cit. on p. 36).

[53] Albert Kapr. Sto a jedna věta ke knižní úpravě. Trans. by An-
tonín Rambousek. Lacerta, 1999. url: http://www.sazba.
cz/typoglosy/typo101.pdf (visited on 10/20/2015) (cit. on
pp. 41, 46, 47).

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2014/REC-json-ld-20140116/
http://www.w3.org/TR/2014/REC-json-ld-20140116/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-n-triples-20140225/
http://www.w3.org/TR/2014/REC-n-triples-20140225/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.schaffter.ca/mom/mom-01.html
http://www.schaffter.ca/mom/mom-01.html
http://www.sazba.cz/typoglosy/typo101.pdf
http://www.sazba.cz/typoglosy/typo101.pdf

BIBLIOGRAPHY 59

[54] Robert Bringhurst. the Elements of Typographic Style. Point
Roberts andWash: Hartley &Marks, 1992. isbn: 0881791105
(cit. on pp. 41, 42, 45–48).

[55] Matthew Butterick. Butterick's Practical Typography: Line spac-
ing. url: http://practicaltypography.com/line-spacing.
html (visited on 11/02/2015) (cit. on p. 42).

[56] Vladimír Beran et al. Aktualizovaný typografický manuál.
6th ed. Kafka Design, 2014 (cit. on p. 45).

[57] CIE. ``Commission internationale de l'eclairage proceedings,
1931''. In: Cambridge University Press Cambridge (1932) (cit. on
pp. 48, 49).

[58] Robert William Gainer Hunt. The Reproduction of Colour.
6th ed. John Wiley & Sons, 2004. isbn: 0470024259 (cit.
on p. 49).

[59] Wyszecki Günther and W. S. Styles. Color science: Concepts
and methods, quantitative data and formulae. New York, 1982
(cit. on p. 49).

http://practicaltypography.com/line-spacing.html
http://practicaltypography.com/line-spacing.html

Acronyms

ack The ACKnowledgement character
api Application Programming Interface
asa The American Standard Association
ascii The American Standard Code for Information Interchange
at&t The American Telephone and Telegraph corporation
bel The BELl character
bmp The Basic Multilingual Plane
bre The Basic Regular Expressions
bs The BackSpace character
bsd The Berkeley SoftwareDistribution. Also known as the Berke-
ley Unix
ca California
can The CANcel character
cern The EuropeanOrganization forNuclear Research (la Conseil
Européen pour la Recherche Nucléaire)
cie The International Commission on Illumination (Commission
Internationale de l'Éclairage)
cldr The Common Locale Data Repository
cli Command Line Interface
cobol The COmmon Business-Oriented Language
cr The Carriage Return character
css The Cascading Style Sheets language
dc The Dublin Core
dc1 The Device Control character No. 1
dc2 The Device Control character No. 2
dc3 The Device Control character No. 3
dc4 The Device Control character No. 4
del The DELete character

62 ACRONYMS

dle The Data Link Escape character
dps Document Preparation System
dtd Document Type Declaration
dtp DeskTop Publishing
ebcdic The Extended Binary Coded Decimal Interchange Code
ecma The European Computer Manufacturers Association
em The End of Medium
emacs The Eventually Munches All Computer Storage editor
enq The ENQuiry character
eot The End Of Transmission
ere The Extended Regular Expressions
esc The ESCape character
etb The End of Transmission Block
etx The End of TeXt
euc The Extended Unix Code
ff The Form Feed character
foaf Friend Or A Foe
fortran The FORmula TRANslator
fs The File Separator
fsm The Free Software Movement
gml The General Markup Language
gnu gnu is Not Unix
gs The Group Separator
gui Graphical User Interface
ht The Horizontal Tab
html The HyperText Markup Language
ibm The International Business Machines Corporation
icc The International Color Consortium
iec The International Electrotechnical Commission
ime Input Method Editor
iri The Internationalized Resource Identifier
iso The International Organization for Standardization
j is The Japanese Industrial Standards encoding
joe The Joe's Own Editor
json The JavaScript Object Notation
json-ld json for ld
jtc A Joint tc
ld Linked Data
lf The Line Feed
ma Massachusetts

ACRONYMS 63

mathml The Mathematical Markup Language
nak The Negative-AcKnowledgement character
nul The NULl character
ny New York
ocr Optical Character Recognition
odf The Open Document Format for office applications
ooxml The Office Open XML format
owl The Web Ontology Language
pc The ibm Personal Computer
pdf The Portable Document Format
pico The PIne COmposer
posix The Portable Operating System Interface
rdf The Resource Description Framework
rdfa rdf in attributes
relax ng The REgular LAnguage for xml New Generation
rfc A Request For Comments
rs The Record Separator
sc A SubCommittee
sgml The Standard General Markup Language
si The Shift In character
so The Shift Out character
soh The Start of Heading
spd Spectral Power Distribution
sr Sound Recognition
stx The Start of Text
sub The SUBstitute character
svg The Scalable Vector Graphics language
svn SubVersioN
syn The SYNchronous Idle character
tc A Technical Committee
tei The Text Encoding Initiative
tron The Real-time Operating system Nucleus
ucs The Universal multiple-octet coded Character Set
us The Unit Separator
usa The United States of America
utf The ucs Transformation Format
vcs Version Control Systems
vi The Visual Interactive editor
vim vi IMproved
vt The Vertical Tab

64 ACRONYMS

w3c The World Wide Web Consortium
wg AWorking Group
wysiwyg What You See Is What You Get
xhtml The eXtensible HyperText Markup Language
xml The eXtensible Markup Language

Index

ack 6
Adobe FrameMaker 14
Adobe InDesign 14, 39
alignment
justified 42
ragged 42

Anton Koberger 51
Apache OpenOffice 13, 20, 39
api 57
asa 53
asci i 5–9, 11, 12, 14, 53
AsciiDoc 39
at&t 35
Atom 13
awk 16, 17

§

Bazaar 17
bel 6
bmp 8, 9, 14
Bob Berner 5
body text 41
bre
alternation operator 15
backreference 15
escape character 15
matching list expression 15
non-matching list expression 15
repetition operator 15
subexpression 15

bre 14–16
bs 6
bsd 13

§

ca 54
can 6
cern 28

character code 5
character encoding 5
Chomsky hierarchy 14
Christian Morgenstern 4
chromacity diagram 49
cie 48–50
cldr 54
cli 13, 16
code page 7
code point 8
color conversion 51
color model

u�u�u�u� 49
u�u�u� 49

color profile 49
Color Science 49
color space

u�u�u�u� 51
u�u�u� 49
u�u�u� 48
u�u�u� 49
Adobe RGB 1998 49
ProPhoto RGB 49
sRGB 49

color space 48
color 48
Compose key 11
CONCUR 27
cone cell 48
control code 5
cr 6
Creole 39
css 23, 29–32, 44

§

dc 32, 33
dc1 6

66 INDEX

dc2 6
dc3 6
dc4 6
del 6
dle 6
Donald Knuth 36
dps
batch-oriented 35
interactive
desktop publishing 36
word processing 36
interactive 13, 35

dps 13, 17, 18, 32, 35, 36, 39
dtd 23, 25–27
dtp 36

§
ebcdic 5
ecma 57
Edgar Allan Poe 37
Elements of Style 3
em 6
Emacs 13
endianity 10
endnote 47
enq 6
eot 6
ere
alternation operator 15
backreference 15
escape character 15
matching list expression 15
non-matching list expression 15
repetition operator 15
subexpression 15

ere 14–16
esc 6
etb 6
u�-TEX 38
etx 6
euc 5

§
F. M. Cornford 43
ff 6
foaf 32, 33
footnote 47
formal grammar 14
fortran 4
From Religion to Philosophy: A Study in

the Origins of Western Speculation 43
fs 6

fsm 35
§

gamut 49
Git 17
gml 22
gnu
Linux 13
nano 13

gnu 13, 14, 35
Google Documents 18
Google Pinyin 11
grep 16, 17
groff, see troff
gs 6
gui 13, 35

§
Han Unification 9
heading 45
Henrik Ibsen 27
ht 6
html 28–32, 34, 39, 44, 57

§
ibm 5, 12, 22
icc 49, 51
iconv 10
iec 7, 10, 54–56
ime 12
ir i 27, 28, 31, 32, 56
iso 7, 10, 53–56

§
JavaScript 29
Jeffrey E. F. Friedl 14
j is 5
joe 13
JScript 29
json 32
json-ld 32, 58
jtc 54–56
justification, see alignment

§
King Lear 48

§
LATEX 36, 43
Latin Vulgate Bible 51
ld 31, 32, 57
leading, see line spacing
Leafpad 13
lf 6
lightweight markup language 39
line height 45

INDEX 67

list 46
luminance 49

§
ma 53
MakeDoc 39
Markdown 39
markup
logical 21, 29, 30, 35, 36
presentation 21, 29, 30, 35, 36

mathml 28, 31
Mercurial 17
microformatting 32
Microsoft Word 14, 20, 39

§
N-Triples 32, 33
nak 6
Noam Chomsky
hierarchy 14

Noam Chomsky 14
note 46
Notepad++ 13
Notepad 13
nroff, see troff
nul 6
ny 53

§
ocr 12
odf 13
ooxml 13
owl 32, 58

§
paragraph
block 47
indented 45
outdented 45

paragraph 42
paragraphs
block 45

pc 5, 11
pdf 13
pdfTEX 38
Peer Gynt 27
Perl 14
pico 13
pinyin 11
plain TEX 38
posix 55
primary color 49
printable character 5
Punycode 8

§
QuarkXPress 14
quotation
block 47
run-in 47

§
rag, see alignment
rdf
literal 32
object 31
ontology 32
predicate 31
resource 31
subject 31
triplet 31

rdf 28, 31–35, 58
rdfa 32, 34, 58
regex, see regular expression
regular expression 13, 14
regular grammar 14
relax ng 23, 25
rfc 56, 57
rs 6

§
sans serif 41
sc 53–56
Scribus 13, 14, 39
sed 16, 17
serif 41
Setext 39
sgml
application 23
attribute 22
element 22
entity 22
node 22
tag 22

sgml 22, 23, 25, 27–29, 39, 55, 56
sgml: The Reason Why and the First Pub-

lished Hint 22
si 6
sidenote 46
small capitals 45
so 6
soh 6
spd 49, 50
spectral locus 50
sr 12
stx 6
style guide 3

68 INDEX

sub 6
Sublime Text 13
surrogate pair 8
svg 28, 31
svn 17–20
syn 6

§
table 46
tc 53, 54
tei 28
text editor 13
text file 4
text processing 4
TextEdit 13, 14
the Art of Computer Programming 36
the Cask of Amontillado 37
the Chicago Manual of Style 3
the Oxford Style Manual 3
the Reproduction of Colour 49
the Subversion book 17
Tim Berners-Lee 31
Timothy John Berners-Lee 28
Tortoise svn 18, 20
Trichter 4
troff

man 36
me 36
mom 36

troff 35
tron 9
Turtle 32, 33
typeface 41

§
ucs
block 8
ucs-4 8

ucs 6, 8–12, 14, 16, 54
Unicode
case conversion 10
normalization 10

us 6
usa 53, 54
utf

utf-16 54
utf-16 8
utf-32 8
utf-7 8

utf-8 54
utf-8 8

utf 6, 8–10, 54
§

VBScript 29
vcs
centralized 17
decentralized 17

vcs 17–20
version control 13
vi 13
vim 13
visible light 48
vt 6

§

w3c 23, 28, 29, 31, 32, 56–58
wg 56
white point 49
Wikicode 39
William Shakespeare 48
William Strunk 3
Word Online 18
writing rules
grammar 3
ortography 3
typography 4

wysiwyg 35
§

XWindow System 11
XƎTEX 43
xhtml 28, 31, 32, 57, 58
xml
application 23
DocBook 28
format 23
language 23
namespace 27
schema language 23
Schema 23, 26
validity 23
well-formedness 23

xml 23–29, 31–33, 39, 56, 57
xmllint 26
XPath 23
XPointer 23
XQuery 23

	Introduction
	Writing
	Text Processing
	Character Encoding
	Text Input
	Text Editors
	Interactive Document Preparation Systems
	Regular Expressions

	Version Control

	Markup
	Meta Markup Languages
	The General Markup Language
	The Extensible Markup Language

	Markup on the World Wide Web
	The Hypertext Markup Language
	The Extensible Hypertext Markup Language
	The Semantic Web and Linked Data

	Document Preparation Systems
	Batch-oriented Systems
	Interactive Systems

	Lightweight Markup Languages

	Design
	Fonts
	Structural Elements
	Paragraphs and Stanzas
	Headings
	Tables and Lists
	Notes
	Quotations

	Page Layout
	Color
	Theory
	Schemes

	Bibliography
	Acronyms
	Index

