
Internship Report
Smart Home Monitoring System

Lasaris Lab - Brno, Czech Republic

ZAOUALI Alaeddine

22/05/2019

ABSTRACT
During my stay in the lab, I was charged of building an IoT home monitoring system based on

Arduino controllers. I divided the whole process into three steps. I start by conceiving and

analyzing parts of the system I aim to achieve, then I start implementing the wiring and the code.

Afterward, I make a security assessment and I try to understand the concerned technology on

different layers.

Nearly 4 months spent in this project allowed me to visit most of the intended technologies and I

used that period to implement a major part of the system. Though, I faced many technical

difficulties, whether it is hardware or software problem. I made choices that took in consideration

time and feasibility. I came up with a solution that works considering the limitations and I chose

to limit the security analysis to specific technologies.

KEYWORDS

IoT - Arduino - Security - Home Automation - Wireless

WORKPLACE

The lab is dedicated to research, development and teaching of topics related to various theoretical

and practical problems related to the development of large software systems and employment of

modern information technologies in practice. They address the issues and challenges related to

the design and development of information systems, including process and data modeling,

management of system development, and various technologies, incl. mobile technology. They are

involved in research and development projects in the field of corporate and public information

systems, complex event processing, and design of large-scale IT infrastructures, such as the smart

energy networks (smart grids).

1

INTRODUCTION

Smart home systems come with the idea of associating different technologies in order to

wirelessly control daily life devices. The emergence of the Internet of Things (IoT) has

contributed in globalizing home automation systems by networking different devices and

processing their respective sensors datas by a centralized server. This document presents the

conception and the implementation of an arduino based system whose aim is to illustrate an easy

and secure way to build a smart home monitoring system. The system makes use of different

communication technologies like Bluetooth, ZigBee or RFID. We will parallelly assess and enhance

the security of the some components and some communication layers. Using an arduino based

circuit also makes this project accessible for beginners and support cheap components.

This internship allowed me to learn much about wireless technologies and introduced me to a

more physical part of IT. It gave me the time to understand how these devices work in an

information system. I also had the time to read research documents and work in a research

environment. This document will start by introducing the different devices we have, then it will

explain how to install everything by giving the different dependencies. I will finally connect the

whole machinery together to get the intended system.

2

Smart Home Monitoring System

1- INSTALLATION 5

● 1.1- COMPONENTS 5
● 1.2- LCD Winstar WH1602A 6
● 1.3- RFID Reader - RC522 9
● 1.4- Bluetooth - hc05 12
● 1.5- ZigBee - XBee S1 14
● 1.6- Sensor - ASAIR AM2302 15

2- RFID Security 16

● 2.1- RFID Security 16
● 2.2- Mifare Classic 17
● ​2.2.1 - Memory Structure 18
● ​2.2.2 - Hardware Weaknesses 19
● 2.3- CRYPTO1 Algorithm 19
● ​2.3.1- Authentication 20
● ​2.3.2- Encryption 21
● 2.4- CRYPTO1 Flaws 22
● 2.5- Solutions 23
● ​2.5.1- Card Security 23
● ​2.5.2- Server Security 24
● ​2.5.3- Reader Security 24
● 2.6- Conclusion 24

3- MONITORING SYSTEM 25

● 3.1- Coordinator 2​3
● 3.2- End-Device 2​7
● 3.3- Server/User 2​8

4- CONCLUSION 30

● 4.1- References 30

1- INSTALLATION
This part will only cover the individual installation of components, we will assemble them at the

end. If you have enough knowledge about what you are doing, you can skip this part, and proceed

to the final wiring.

3

1.1- COMPONENTS

Arduino Nano

Bluetooth - hc05

ZigBee - Xbee S1

RFID Reader - rc522

RFID Tag - Mifare Classic 1k

RFID Tag - Mifare Classic 1k

LCD - Winstar WH1602A

Temperature & Humidity
Sensor - ASAIR AM2302

Potentiometer

4

1.2- LCD Winstar WH1602A

We will use LCD screens (Liquid Crystal Display) to display sensors feedback and the system

state. We can use it alongside with LEDs to inform users about successful and failed operations

then display indications to help them. The LCD we’re using is a Winstar WH1602A but most 16x2

LCDs should work the same. Check pins order on LCD before wiring.

5

We need to import the ​LiquidCrystal ​library to use it.

We will use the following wiring:

● RS ​: Decides whether LCD uses data register (High) or instruction register (Low).

○ Connected to ​D11

● E ​(en) - "Enabling" pin; when this pin is set to logical low, the LCD does not care what is

happening with R/W, RS, and the data bus lines; when this pin is set to logical high, the -

LCD is processing the incoming data.

○ Connected to ​D10

● R/W ​- Right to / Read from mode.

○ Connected to Ground (​GND​)
● DB4 -- DB7​ - 4 data bus lines, which perform read/write of data.

○ Connected to ​D5 ​-- ​D2 ​(arbitrary)

● VO ​- Pin for LCD contrast (We will use a potentiometer to control it).

○ Connected to Potentiometer variable ​signal pin

● Vss / Vdd ​- Ground and Voltage supply respectively.

○ Connected to ​GND ​and ​5V ​respectively

● A / K ​- Used for the LCD backlight interface.

○ Connected to ​5V ​and ​GND ​respectively

6

We defined previously our variable lcd, we can start by displaying a message when

arduino is powered up.

There are 16x2 cells we can fill. First, we need to set the cursor with lcd.setCursor(),

first argument is column index, second one is line index.

1.3- RFID Reader - RC522

We will use the RFID reader RC522 and Mifare Classic cards for authentication. The RFID

technology will be further explained on section 2. Reader has 8 pins:

We need to import the ​MFRC522 ​library and include ​SPI ​library to use it.

(SPI = Serial Peripheral Interface) - synchronous serial communication, in this type of

communication, SPI master controls communications with SPI slave.

7

We will use 7 pins out of 8.

● Vcc ​- Power supply 3.3V.

○ Connected to ​3.3V​ pin or to ​5V ​with a logic shifter

● RST ​- Used for reset and to power-down reader.

○ Connected to ​D9 ​(Arbitrary)

● GND

○ Connected to ​GND ​(Ground).

● TX-SCL-MISO​ - TX (Transmit) Acts as MISO (Master Input, Slave Output) since we’re only

concerned with SPI connection.

○ Connected to ​D12 ​(Fixed)

● MOSI ​- Master Output, Slave Input

○ Connected to ​D11 ​(Fixed)

● SCK ​(or SCLK)​ ​- Serial Clock, accepts arduino clock pulses.

○ Connected to ​D13 ​(Fixed)

● SS / SDA / RX - ​RX (Receive) Acts as SS (Slave Select) since we’re only concerned with SPI

connection. This tells the slave that it should wake up and receive / send data.

○ Connected to ​D10 ​(Arbitrary)

We can start by SPI connection and initializing reader.

We defined earlier mfrc522 variable, we can use PICC_IsNewCardPresent() to detect a new card

and PICC_ReadCardSerial() to proceed serial communication.

8

We can use it this way alongside with the LCD screen and 2 LEDs. (We moved LCD arbitrary pins

since taken by reader). This code allows to identifiy a person by his card ID and to grant him

access.

9

1.4- Bluetooth - hc05

We will use bluetooth devices to make the communication bridge between the server and the

coordinator controller, the communication is set an unique slave/master. For this task, I will be

using a linux based server using a python script. You only have to connect the device through

your bluetooth manager. We will be using the hc05 device.

We will use 5 pins out of 6:

● Vcc ​– Power supply ​5V​.
○ Connected to 5V pin

● GND
○ Connected to ​GND

● TX ​– Transmission
○ Connected to TX pin or to an arbitrary pin used by the ​SoftwareSerial ​library.

● RX ​– Reception

○ Connected to RX pin or to an arbitrary pin used by the ​SoftwareSerial​ library.

● State ​– Allows you to use the AT mode (to configure the device)

○ Connected to an arbitrary pin defined in the code.

When using hc05 moduel with default parameters, we can detect it with any smartphone

or computer. Once connected, we can affect a serial port to the communication. There’s

no need to import any library for that task. We just have to use the usual RX/TX

communication or through the SoftwareSerial one.

10

In this example, we’re using the SoftwareSerial library that allows to simulate the TX/RX pins with normal
ones. Then, we will define a buffer that will contain the bytes we receive from the server by bluetooth
communication.

We will define our baud rate to 9600.

The bytes received are stored in a buffer, we can extract the buffer data by using

serial_connection.read().

We start by checking if there’s any available communication, then we will extract the message

through in loop that goes over the number of bytes received for the message given by

serial_connection.available()​. For each iteration, we will use the ​inChar​ variable to get the byte

then we add it to ​inData[i]​.

We delete the buffer when it gets more than ​BUFFER_SIZE.

To send a message, we use ​serial_communication.println() ​or

serial_communication.write()​.

1.5- ZigBee - XBee S1

We will use zigbee devices to make the communication bridge between the coordinator and the

end-device arduino controller, the communication is set on broadcast. I will be using the Xbee S1

device here. Two zigbee devices can communicate if they share the same channel and the same

11

pan ID at least. In order to configure the zigbee devices, we need to install XCTU, which is a

software brought by Digi, the constructor of Xbee S1. If needed, we must flash the Xbee S1 devices

with the Xbee 802.15.4 option.

Zigbee devices are known for providing several options for the networking in IoT. it has a reach

of ~100 meters and can be extended by using a ​mesh ​network that will forward the messages

using its protocol. Though it is only possible with Xbee S2 devices. In our case, we can only use a

star ​network Xbee S1 which only allows one ​coordinator ​for different ​end-devices​.

Having encountered technical issues using a star network, I decided to communicate Xbee devices

through ​end-device to ​end-device communication using a broadcast emission. This issue is

proper to low level OSI layers. Thus, it doesn’t affect the application level, it can be fixed without

worrying about the code behind it.

For wiring, ​We will use 4 pins out of 5:

● Vcc ​– Power supply ​5V​.
○ Connected to 5V pin

● GND
○ Connected to ​GND

● TX ​– Transmission
○ Connected to TX pin or to an arbitrary pin used by the ​SoftwareSerial ​library.

● RX ​– Réception

○ Connected to RX pin or to an arbitrary pin used by the ​SoftwareSerial​ library.

When using an Xbee S1 device, we only need to use the serial communication, pretty much like

the bluetooth communication, we only need to import SoftwareSerial library.

12

We start the communication in 9600 baud rate.

As for bluetooth reading procedure, we can use it for zigbee using this function.

To send a message, we can use ​XBSerial.write()​.

1.6- Sensor - ASAIR AM2302

We will use this sensor for humidity and temperature, we need to to import the DHT library and

to use the following configuration, defining the DHTPIN you want.

● Vcc ​– Power supply ​5V​.
○ Connected to 5V pin

● GND
○ Connected to ​GND

● Data ​– Transmission
○ Connected to an arbitrary pin.

13

We need to start the device by using ​dht.begin().

Then, we can take the measurements as following.

2- RFID Security

This section comes as the research part of my internship, I try to explain very specifically

how security works in the RFID system I’m using, if you’re only concerned by the

functional part, please skip this part.

2.1- RFID Security

When it comes to smart buildings, authentication plays a major role in securing the whole system.
Breaching the entry point can lead to severe consequences in a system where differents users have
differents access rights to different devices. Authentication comes as a first security layer to our system.
RFID (Radio Frequency Identification) is an efficient way to ensure a fast and secure authentication. In
our case, we will be focusing on a specific smart card which is the Mifare Classic 1K using the RC522
RFID Reader over an arduino circuit. An arduino solution comes with the idea of a cheap way to make a
smart home monitoring system and Mifare Classic cards (or tags) are widely known for their low prices.
They rely on a proprietary cryptographic algorithm CRYPTO1 for authentication and encryption. The
algorithm has been partially reverse engineered in 2007 ​[1] and completely reverse engineered in 2008
[2]​. Section 2.2 describes the hardware structure of the card and covers its weaknesses. Section 2.3
shows the CRYPTO1 authentication protocol followed by the complete algorithm. Section 2.4 discusses
the different weaknesses of the algorithms against exhaustive attacks and ciphertext-only cryptanalysis.
Solutions over different layers are proposed in section 2.5. Finally, a summary and a conclusion are given
in section 2.6.

14

2.2- Mifare Classic

The Mifare Classic belongs to the family of passive RFID tags. Manufacturer delivers tags with random
7-bytes or 4-bytes UID. Operating distance goes up to 100 mm with a data transfer of 106 kbits/s on an
operating frequency of 13.56 Mhz.

PCD (Proximity Coupling Device) delivers energy to the tag and tag responds with data transfer.

The tag hardware structure is composed of several layers that ensure an efficient communication. We will
be focusing on the integrity, confidentiality and availability part.

15

The above block diagram shows the different communication layers of the tag. We will only focus on the
four blocks processed by the Logic Unit.

● CRYPTO1 ​: Mifare Classic originally relied on a security-through-obscurity encryption with an
algorithm called CRYPTO1. This part ensures the confidentiality of the communication. We will
focus more on it in section 3 and 4.

● RNG ​: The random number generator block is used for the authentication part. We will also talk
more about it in section 3 and 4.

● CRC-16 ​: The cyclic redundancy check block ensures the integrity of datas, for each block of data
it calculates a hash that will be compared with a freshly calculated hash on the reader side.

● EEPROM ​: This is where data is stored including the UID, the differents keys and the
manufacturer data.

2.2.1 - Memory Structure

The Mifare Classic EEPROM memory is structured in different and independent sectors. Each sector has
4 blocks of 16 bytes each. In our case, there are 16 sectors.

We have 16 sectors, 256 blocks and each block has 16 bytes of data and hence the card has 1024 kB of
data.

16

The first block ​0x00 ​of the first sector is only used to store the UID and the manufacturer informations.
The last block of each sector is used to store authentication keys A and B, each one of the two keys has
specific access control bytes stored in the same block.

2.2.2 - Hardware Weaknesses

We’re only concerned about weaknesses of components directly linked to the CRYPTO1 block in figure 2.
CRYPTO1 uses a stream cypher encryption for the authentication and communication part. The algorithm
uses a 48-bit key, thus making an exhaustive attack easy already. Since the algorithm wasn’t made
public, there couldn’t be an offline attack before it was reverse engineered. Every attempt would’ve taken
6 milliseconds ​[1]​, thus making an online exhaustive attack too long.

The RNG block also presents severe flaws. Random numbers are used to make 32-bit nonces used for
the authentication phase where each bit is generated by a 16-bit LFSR (Linear Feedback Shift Register).
As shown in ​[2]:

The register also wraps every 0.6 seconds after generating 65,655 possible output values ​[1]​. The
register is also unnecessarily reset to a known state when tag is powered up. Hence, by controlling the
timing of the protocol we can control the generated number (nonce).

CRYPTO1 is fully implemented in hardware and hasn’t been peer-reviewed since it’s been secret until
2008. The cryptography functions make up about 400 2-NAND (Ge) gates which is very light compared to
a small implementation of an AES block cipher which requires 3400 Ges. It is very fast, it is very flawed
though.

Mifare Classic cards passively answer requests from any reader, they are vulnerable to cloning and
spoofing. Cloning basically means copying all datas from a certain tag and replicating it on a new card
with a different ID. The copy card can still be easily detected since it has a different ID (IDs are generally
read-only). Spoofing involves reading and recording data transmission from a tag and faking the ID when
retransmitting the data, thus making it appear to be valid.

2.3- CRYPTO1 Algorithm

CRYPTO1 uses a 48-bit LFSR and a 48-bit key. The LFSR of CRYPTO1 can be seen as an engine (
register) that is constantly shifted and fed with new inputs calculated from the previous state.

17

2.3.1- Authentication

First, we need to define the authentication protocol. When a tag is in contact with the reader,
reader selects the tag and the tag answers with its UID.

In order to access each sector, reader has to successfully authenticate since each sector can
have its own keys. For instance, reader wants to authenticate to sector b. The tag generates a
random number ​n​T​ ​(nonce) and sends it to reader as a challenge.

Starting from this point, encryption begins. Reader also generates a random number ​n​R ​and
calculates an answer for the tag challenge ​a​R​ = succ​64​(n​T​)​ such as ​[2]:

L​16 ​is defined above in 2.2. ​We denote encryptions by {.} and define {​n​R​} and {​a​R​} ∈ GF(2).
Reader then sends {​n​R​}{​a​R​} concatenated. Tag finally calculates the answer ​a​T = succ​64​(n​R​) and
both are authenticated if ​a​R ​and ​a​T​ are mutually correct.

18

2.3.2- Encryption

When authentication starts, the register is fed with the 48-bit key. At each clock cycle, the stream cipher
makes a left shift and adds a new bit according to the following definitions:

The 48-bit key is only used to to initialize the LSFR, the keystream bit is defined by the state of the LSFR
register and during the authentication, ​n​R​ and ​a​R​ are XORed with keystream bits as below:

For the first authentication, the tag challenge ​n​T ​is not encrypted. Though, if we authenticate to a second

19

sector subsequently, ​n​T​ ​will be encrypted and literature ​[2]​ defines it as nested authentication.:

The keystream bits are defined by the filter function as shown in figure 5. It only depends on current state
of the stream cipher and since the stream cipher is initialized with the 48-bit key, it also directly depends
on the key.

Overall, CRYPTO1 uses the filter function to generate the keystream bits. Retrieving the keystream bits
allows to retrieve the plaintext since encryption only consists in XORing plaintext with keystream bits.

2.4- CRYPTO1 Flaws

In order to ensure the integrity of the communication, the tag generates one parity bit for each byte that is
communicated. Though, parity bits are computed over the plaintext and encrypted with the first keystream
bit that is used to encrypt the next byte.

Let {​p​0​} be the encrypted parity bit of the first byte {​n​T[0,7]​} and {​n​T8​} the first encrypted bit of the second

20

byte {​n​T[8,15]​}. We can deduce whether or not ​n​T8 and ​p​0 are equal since they are XORed with the same
keystream bit.

CRYPTO1 was initially advertised with a 48-bit resistant encryption, which can be considerably reduced in
order to retrieve the key. If we consider the nested authentication defined in 3.2 and the weak random
number generation, we can retrieve 32 bits of the keystream generated by the 16-bit LSFR and used to
encrypt ​n​T​. Since we can predict ​n​T​, we can XOR it with {​n​T​} in order to find it.

The filter function used to generate the keystream bits only uses odd indexed bits from the main 48-bit
LSFR as shown in figure 5 ie. a​9, a​11​, .., a​47. This considerably reduces the computing power required for
an exhaustive search from 2​48 to 2​39 since we start from a​9​. This can even be further reduced to ~2​20 if we
split the cipher feedback into two parts, even and odd indexed bits. Combining them reduces the
computing power to (2​20​ + 2​19​) Proof. in ​[2]​.

Moreover, the authentication protocol leaks 4 keystream bits through errors. During the three pass
authentication, if the answer a​R is wrong, tag sends a 4-bit error code 0x05 indicating a failed
authentication. The error code is sent encrypted, thus leaking 4 keystream bits.

There are even more sophisticated ways to reduce even further the candidate keys for an exhaustive
search in literature ​[2]​. This also gives us enough informations about how security is initially dealt with
Mifare Classic cards and gives us clues about where we should enhance security.

2.5- Solutions

In this section will discuss eventual solutions that could be applied in a smart building situation.
Considering a backend server and a database storage, we will have to operate on different level in the
arduino based system. We will consider enhancing security at the tag level, server side and reader wise.
We will try to discuss solutions for different security issues ie. identification, authentication, integrity,
authorization and accounting.

2.5.1- Card Security

There isn’t much we can do to enhance card security since everything is implemented in hardware and
there isn’t much we can operate in apart from the EEPROM. UID is read-only in our case, which makes
cloning the card a bit more difficult to make than usual, but with cheap hardware it is still possible to spoof
the card. We cannot operate much in the CRYPTO1 protocol since the card executes the protocol with no
condition. As such, we can only depend on CRYPTO1 to ensure authentication card-wise. However, we
can operate the EEPROM data integrity. By adding an additional encryption layer, we could prevent a
clone card to get information from the card. This can be done by adding an AES128 layer to encrypt
stored datas. Initially, the Rjindael algorithm used for AES was designed for smart cards ​[3]​, and was also
meant to be used as a hash method. It has been successfully implemented but AES128 isn’t strong
enough for a hash by our standards today but it fits well with the 16-bytes blocks. We could apply AES256

21

by encrypting two sectors in a row which would enhance security. The attacker would still successfully
authenticate though.

Each sector has a proper key for authentication. Manufacturer deliver the card with the same key for
every key. Changing the key for each sector can improve security as it would take longer to clone.

Accounting requires a lot of datas, thus it doesn’t fit in a 1kB EEPROM. Since CRYPTO1 protocol is very
fast, we can possibly add an additional protocol where we put a new UID and process the communication
on server-side.

2.5.2- Server Security

Since the whole system is connected to a server, authentication should be heavily enticed to it. Every
connection should be normally logged. To prevent clone cards to operate efficiently, we can check the
logs before granting access. For instance, we can check if the person is already inside, that would
requires him to scan his card when he leaves too. We can check if the person is actually supposed to be
in that very place, if he’s on holiday or if he’s not supposed to have access at that time. We can also
decide whether we store encrypted datas on the card or we store it on a database or an in-between
solution. Since Mifare Classic cards are vulnerable against cloning we cannot completely ensure a proper
authentication. We can though enhance the security procedure by adding external parameters to reduce
the probabilities of an intrusion. Another solution can be applied where we add a second factor
authentication by adding a password. This can be done with a low price by adding a 3x3 keypad to the
arduino controller. Though it would take much longer to authenticate compared to an RFID alone
authentication.

We can store the hash of every tag on a database to check the integrity of the card. This requires to have
different keys for each sectors in order to make it efficient.

2.5.3- Reader Security

If we consider adding a new UID in one of the available blocks, we can enhance security against cloning.
For each authentication, we can change the UID on the card and update it on the server. The next
authentication would require the new UID. For instance, let Alice be the original owner and Bob the
intruder. If Bob clones Alice’s card and Alice authenticates afterward before Bob does, Bob won’t have
access since the UID has changed. If Bob authenticates before Alice does, he would have access, but
when Alice tries to authenticate afterward, she would know that someone cloned her card and would
report to the administrators or get access with an alternative authentication method.

2.6- Conclusion

RFID is an efficient technology for storage and quick authentication. Today’s RFID chips are more

22

advanced and use advanced encryption such as AES and ECC. Though it comes at different prices,
Mifare Classic are easy to get and come at a cheap price. It is though very poorly encrypted knowing that
AES was already a standard in 1999 and Mifare Classics continued to be the main RFID product 10 years
after, which support the idea that security-through-obscurity doesn’t work since peer-reviewing is very
important to assess the quality of an algorithm. Although, security operates at different independant layers
and solution can be found. If we focus on an entry level Smart House system, we can find compromises
to operate safely and work with an efficient technology at an entry level price.

There is a code, normally attached to this document, that puts AES128 encrypted data in RFID cards.

3- MONITORING SYSTEM
Due to technical limitations, I had to use the same machine for server and user.

3.1- Coordinator

23

The coordinator is the main bridge between sensors and user/server. It will be loaded with

different modules: Bluetooth, ZigBee, LCD, RFID and some LEDs.

RFID Bluetooth ZigBee LCD LEDs

RST_PIN 9
SS_PIN 10

RX A3
TX A4

RX A5
TX 6

RS 8
EN 7
D4 5
D5 4
D6 3
D7 2

SUCCESS_LED A1
FAILURE_LED A0

The following diagram shows how the system works independently.

24

Two options for controller, either it detects an RFID card or it just waits for instructions from

Bluetooth communication. The RFID part can be used to grant access, the second part is meant to

display the communication protocol in order to get it working.

This is the method used for bluetooth detection:

It will extract data from the arduino buffer byte by byte, then it will will process the information

regarding the meant protocol.

It works the same for ZigBee:

25

We can also add other sensors by using this switch-case function and by defining the related

functions under the loop() one.

26

3.2- End-Device

End devices​ are the sensor controllers, they send feedback to coordinators informing them of

sensor

ZigBee LCD Sensor

RX A3
TX A4

RS 12
EN 11
D4 5
D5 4
D6 3
D7 2

DHTPIN 8

27

This code allows to get the instruction from coordinator through ZigBee communication

and to reply back with a message.

3.3- Server/User

For the server part, we will use a python script, that can be turned into a service in the

future. We will need to import ​mysql.connector​ library to connect the python script to

the mysql API. We also need to import ​pySerial ​to get the bluetooth communication in a

specific port.

First, we define our mysql settings, then we define the port we chose previously for the

bluetooth communication while connecting it.

28

The server part is not fully developed yet, so as a testing code, we can define it as below:

We start an infinite loop to get the command we want.

For the authentication, we put the script on listening mode, and we wait until it gets an UID. Then,

it will check the UID in the mysql database. The feedback comes after that.

For the sensor informations, we just need to send a bluetooth message.

And everything should be working just fine, software-wise.

29

4- CONCLUSION
As a project, the smart house monitoring system comes as a good way to explore the hardware

issues and specifications in the IT domain. It introduced me to the physical part it, it had me think

differently considering hardware constraints. This can be worked on by adding features for

optimization and testing.

4.1- References

[1] Reverse-Engineering a Cryptographic RFID Tag, 2007

[2] Ciphertext-only Cryptanalysis on Hardened Mifare Classic Cards, 2008

[3] AES Proposal: Rijndael, Joan Daemen, Vincent Rijmen, 2000

[4] docs-05-3474-20-0csg-zigbee-specification

30

