AtmeL Atmel 8-bit AVR Microcontroller with 2/4/8K

Bytes In-System Programmable Flash

ATtiny25/V / ATtiny45/V / ATtiny85/V

Features

¢ High Performance, Low Power AVR® 8-Bit Microcontroller
¢ Advanced RISC Architecture
— 120 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
* Non-volatile Program and Data Memories
2/4/8K Bytes of In-System Programmable Program Memory Flash
« Endurance: 10,000 Write/Erase Cycles
128/256/512 Bytes In-System Programmable EEPROM
« Endurance: 100,000 Write/Erase Cycles
128/256/512 Bytes Internal SRAM
— Programming Lock for Self-Programming Flash Program and EEPROM Data Security
* Peripheral Features
— 8-bit Timer/Counter with Prescaler and Two PWM Channels
8-bit High Speed Timer/Counter with Separate Prescaler
* 2 High Frequency PWM Outputs with Separate Output Compare Registers
* Programmable Dead Time Generator
USI — Universal Serial Interface with Start Condition Detector
10-bit ADC
* 4 Single Ended Channels
« 2 Differential ADC Channel Pairs with Programmable Gain (1x, 20x)
* Temperature Measurement
— Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator
* Special Microcontroller Features
— debugWIRE On-chip Debug System
— In-System Programmable via SPI Port
— External and Internal Interrupt Sources
— Low Power Idle, ADC Noise Reduction, and Power-down Modes
— Enhanced Power-on Reset Circuit
— Programmable Brown-out Detection Circuit
— Internal Calibrated Oscillator
* 1/0 and Packages
— Six Programmable I/O Lines
— 8-pin PDIP, 8-pin SOIC, 20-pad QFN/MLF, and 8-pin TSSOP (only ATtiny45/V)
* Operating Voltage
— 1.8-5.5V for ATtiny25V/45V/85V
— 2.7-5.5V for ATtiny25/45/85
* Speed Grade
— ATtiny25V/45V/85V: 0 —4 MHz @ 1.8 - 5.5V, 0- 10 MHz @ 2.7 - 5.5V
— ATtiny25/45/85: 0 — 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V
* Industrial Temperature Range
* Low Power Consumption
— Active Mode:
¢ 1 MHz, 1.8V: 300 pA
— Power-down Mode:

¢ 0.1 pA at 1.8V Rev. 25860-AVR-02/13

25860-AVR-02/13




1. Pin Configurations

Figure 1-1.  Pinout ATtiny25/45/85

(PCINT5/RESET/ADCO/dW) PB5 [
(PCINT3/XTAL1/CLKI/OC1B/ADC3) PB3 [}
(PCINT4/XTAL2/CLKO/OC1B/ADC2) PB4 []
GND [

(PCINT5/RESET/ADCO/dW) PB5
(PCINT3/XTAL1/CLKI/OC1B/ADC3) PB3
DNC

DNC
(PCINT4/XTAL2/CLKO/OC1B/ADC2) PB4

PDIP/SOIC/TSSOP

A w N -

N

Ul O N

] vce

] PB2 (SCK/USCK/SCL/ADC1/TO/INTO/PCINT2)

1 PB1 (MISO/DO/AIN1/OCOB/OC1A/PCINT1)

[ PBO (MOSI/DI/SDA/AINO/OCOA/OCTA/AREF/PCINTO)

NOTE: TSSOP only for ATtiny45/V

oMM

H oW N

16 [ DNC

oo g

DNC []6

DNC []10

VCC

PB2 (SCK/USCK/SCL/ADC1/T0/INTO/PCINT2)

DNC

PB1 (MISO/DO/AIN1/OCOB/OCTA/PCINT1)

PBO (MOSI/DI/SDA/AINO/OCOA/OCTA/AREF/PCINTO)

NOTE: Bottom pad should be soldered to ground.
DNC: Do Not Connect

1.1  Pin Descriptions

111 VCC
Supply voltage.
11.2 GND
Ground.

1.1.3 Port B (PB5:PBO)

Port B is a 6-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The Port B output buffers
have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Atmel

ATtiny25/45/85 [DATASHEET] 2

25860-AVR-02/13



Port B also serves the functions of various special features of the ATtiny25/45/85 as listed in “Alternate Functions
of Port B” on page 59.

On ATtiny25, the programmable I/O ports PB3 and PB4 (pins 2 and 3) are exchanged in ATtinyl5 Compatibility
Mode for supporting the backward compatibility with ATtiny15.

11.4 RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock
is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 21-4
on page 164. Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) 1/0 pin.

ATtiny25/45/85 [DATASHEET 3
Atmel y [ ]

25860-AVR-02/13



2. Overview

The ATtiny25/45/85 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By
executing powerful instructions in a single clock cycle, the ATtiny25/45/85 achieves throughputs approaching 1
MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1.  Block Diagram

8-BIT DATABUS

1
! I
! 1
! 1
! 1
! 1
! I
! 1
! 1
! 1
! 1
! 1
1
' CALIBRATED X
. INTERNAL !
| OSCILLATOR X
! l > A !
! 1
! |
. »| PROGRAM STACK . | wATCHDOG o] TIMING AnD '
| COUNTER POINTER TIMER CONTROL X
1
vee A A A A t !
t X \ 4 Y _ | mcu controL !
| PROGRAM < ”| REGISTER X
VT FLask < SRAM !
, MCU STATUS | !
— ’ B REGISTER |
! 1
GND INSTRUCTION GENERAL '
| REGISTER g PURPOSE !
! l»|  REGISTERS PN py— < . !
! y X 7| [ 7| countero !
1
! INSTRUCTION — Y I
! DECODER z TIMER/ < > X
! 7| COUNTER1 !
| |
1
UNIVERSAL !
CONTROL
| LINES ALU «—>  SERAL  |e— |
! INTERFACE |
| > |
| A !
| STATUS | |«—p| INTERRUPT > '
' REGISTER bl UNIT !
! 1
! 1
: y :
1
! PROGRAMMING DATA |
— e OSCILLATORS
H LOGIC EEPROM !
! |
: ) |
: < > !
! 1
' A A A !
|
! \ AR A A4 !
I DATA REGISTER DATA DIR. ADC/ i
! PORT B REG.PORT B ANALOG COMPARATOR !
! KAAAA A i
1
! AAAAR] AAAAL i
1
: PORT B DRIVERS !
1
| X A A A & RESET|
! I
Ll A A A VA A
YVY VY VYY

PB[0:5]

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are
directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one
single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

ATtiny25/45/85 [DATASHEET 4
Atmel y [ ]

25860-AVR-02/13



The ATtiny25/45/85 provides the following features: 2/4/8K bytes of In-System Programmable Flash, 128/256/512
bytes EEPROM, 128/256/256 bytes SRAM, 6 general purpose 1/O lines, 32 general purpose working registers, one
8-bit Timer/Counter with compare modes, one 8-bit high speed Timer/Counter, Universal Serial Interface, Internal
and External Interrupts, a 4-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and
three software selectable power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter,
ADC, Analog Comparator, and Interrupt system to continue functioning. Power-down mode saves the register con-
tents, disabling all chip functions until the next Interrupt or Hardware Reset. ADC Noise Reduction mode stops the
CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions.

The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash
allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional
non-volatile memory programmer or by an On-chip boot code running on the AVR core.

The ATtiny25/45/85 AVR is supported with a full suite of program and system development tools including: C Com-
pilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits.

ATtiny25/45/85 [DATASHEET 5
Atmel y [ ]

25860-AVR-02/13



3. About

3.1 Resources

A comprehensive set of development tools, application notes and datasheets are available for download on
http://lwww.atmel.com/avr.

3.2 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These
code examples assume that the part specific header file is included before compilation. Be aware that not all C
compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent.
Please confirm with the C compiler documentation for more details.

For 1/0 Registers located in the extended I/0 map, “IN”, “OUT", “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended 1/0. Typically, this means “LDS” and “STS” combined
with “SBRS”, “SBRC”, “SBR", and “CBR". Note that not all AVR devices include an extended 1/O map.

3.3 Capacitive Touch Sensing

Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel AVR microcon-
trollers. The QTouch Library includes support for QTouch® and QMatrix® acquisition methods.

Touch sensing is easily added to any application by linking the QTouch Library and using the Application Program-
ming Interface (API) of the library to define the touch channels and sensors. The application then calls the API to
retrieve channel information and determine the state of the touch sensor.

The QTouch Library is free and can be downloaded from the Atmel website. For more information and details of
implementation, refer to the QTouch Library User Guide — also available from the Atmel website.

3.4 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20
years at 85°C or 100 years at 25°C.

ATtiny25/45/85 [DATASHEET 6
Atmel y [ ]

25860-AVR-02/13



4. AVR CPU Core

4.1 Introduction

This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure cor-
rect program execution. The CPU must therefore be able to access memories, perform calculations, control
peripherals, and handle interrupts.

4.2 Architectural Overview

Figure 4-1. Block Diagram of the AVR Architecture

( Data Bus 8-hit

A4
Program Status
Flash Counter [T and Control |~
Program
Memory <
4 > 32x8
Instruction General
Register Purpose Interrupt
< Registrers <> Unit
y
Instruction Watchdog
Decoder A < Timer
o 2 N
£ ‘0
9] [%]
l g g ALU Analog
Control Lines 3 2 Comparator
<
- ©
|8 ()
(0] =
= e o
o = <> |/0 Modulel
g Data «>}e>{ 110 Module 2
SRAM
<—»| |/O Module n
EEPROM <
I/O Lines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with separate memories
and buses for program and data. Instructions in the Program memory are executed with a single level pipelining.
While one instruction is being executed, the next instruction is pre-fetched from the Program memory. This concept
enables instructions to be executed in every clock cycle. The Program memory is In-System Reprogrammable
Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle
access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two oper-

ATtiny25/45/85 [DATASHEET 7
Atmel y [ ]

25860-AVR-02/13



ands are output from the Register File, the operation is executed, and the result is stored back in the Register File
—in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing —
enabling efficient address calculations. One of the these address pointers can also be used as an address pointer
for look up tables in Flash Program memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single
register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated
to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the
whole address space. Most AVR instructions have a single 16-bit word format, but there are also 32-bit
instructions.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack
is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total
SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before sub-
routines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data
SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/0O space with an additional Global Interrupt Enable bit in
the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have
priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the
priority.

The 1/0 memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/O functions. The I/O memory can be accessed directly, or as the Data Space locations following those of the Reg-
ister File, 0x20 - Ox5F.

4.3 ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers.
Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an
immediate are executed. The ALU operations are divided into three main categories — arithmetic, logical, and bit-
functions. Some implementations of the architecture also provide a powerful multiplier supporting both
signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed description.

4.4  Status Register
The Status Register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the Status
Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.

ATtiny25/45/85 [DATASHEET 8
Atmel y [ ]

25860-AVR-02/13



441 SREG — AVR Status Register
The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0

Ox3F | I | T | H | S | Y N z [& | srec
Read/Write R/W R/W RIW R/W R/W RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 -1I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control
is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the inter-
rupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an
interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set
and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference.

e Bit 6 —T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the oper-
ated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be
copied into a bit in a register in the Register File by the BLD instruction.

e Bit 5 - H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful in BCD arithmetic.
See the “Instruction Set Description” for detailed information.

« Bit4-S:SignBit, S=N®V
The S-hit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See
the “Instruction Set Description” for detailed information.

» Bit 3-V: Two’'s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’'s complement arithmetics. See the “Instruction Set Descrip-
tion” for detailed information.

e Bit 2 - N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

» Bit1l-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

» Bit 0 - C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

ATtiny25/45/85 [DATASHEET 9
Atmel y [ ]

25860-AVR-02/13



4.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required perfor-
mance and flexibility, the following input/output schemes are supported by the Register File:
» One 8-bit output operand and one 8-bit result input
» Two 8-bit output operands and one 8-bit result input
» Two 8-bit output operands and one 16-bit result input
» One 16-bit output operand and one 16-bit result input
Figure 4-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 O0XOE
Purpose R15 Ox0F
Working R16 0x10
Registers R17 0x11
R26 0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and most of them are sin-
gle cycle instructions.

As shown in Figure 4-2, each register is also assigned a Data memory address, mapping them directly into the first
32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory
organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to
index any register in the file.

45.1 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit
address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are
defined as described in Figure 4-3.

ATtiny25/45/85 [DATASHEET 10
Atmel y [ ]

25860-AVR-02/13



Figure 4-3. The X-, Y-, and Z-registers

15 XH XL
X-register I o7 o]
R27 (OX1B) R26 (OX1A)
15 YH YL
Y-register I 7 0 I 7 0 I
R29 (Ox1D) R28 (0X1C)
15 ZH ZL 0
Z-register |7 0 |7 0 |
R3L (Ox1F) R30 (OX1E)

In the different addressing modes these address registers have functions as fixed displacement, automatic incre-
ment, and automatic decrement (see the instruction set reference for details).

4.6  Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the
Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a
Stack PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This
Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or inter-
rupts are enabled. The Stack Pointer must be set to point above 0x60. The Stack Pointer is decremented by one
when data is pushed onto the Stack with the PUSH instruction, and it is decremented by two when the return
address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when
data is popped from the Stack with the POP instruction, and it is incremented by two when data is popped from the
Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0O space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small
that only SPL is needed. In this case, the SPH Register will not be present.

46.1 SPH and SPL — Stack Pointer Register

Bit 15 14 13 12 11 10 9 8

Ox3E SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

0x3D SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

4.7  Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the
CPU clock clkcpy, directly generated from the selected clock source for the chip. No internal clock division is used.

Figure 4-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture
and the fast access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with
the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.

ATtiny25/45/85 [DATASHEET 11
Atmel y [ ]

25860-AVR-02/13



Figure 4-4. The Parallel Instruction Fetches and Instruction Executions

Tl T2 T3 T4

ok —  ~— 4

CPU

1st Instruction Fetch

1

i

1st Instruction Execute :
2nd Instruction Fetch :

1

1

1

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch | | | A S

Figure 4-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.

Figure 4-5.  Single Cycle ALU Operation
T1 T2 T3 T4

ok — 4 N/

CPU

Total Execution Time

1

1

:

Register Operands Fetch : >

1

ALU Operation Execute '

1

1

Result Write Back

4.8 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a
separate Program Vector in the Program memory space. All interrupts are assigned individual enable bits which
must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the
interrupt.

The lowest addresses in the Program memory space are by default defined as the Reset and Interrupt Vectors.
The complete list of vectors is shown in “Interrupts” on page 47. The list also determines the priority levels of the
different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next
is INTO — the External Interrupt Request 0.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user soft-
ware can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current
interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For
these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt
handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writ-
ing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding
interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the
flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit
is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is
set, and will then be executed by order of priority.

ATtiny25/45/85 [DATASHEET 12
Atmel y [ ]

25860-AVR-02/13



The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not nec-
essarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will
not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction
before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be
executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example
shows how this can be used to avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; Store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; Start EEPROM write

sbi EECR, EEPE

out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;
cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();
EECR |= (1<<EEMPE); /* start EEPROM write */
EECR |= (1l<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pend-
ing interrupts, as shown in this example.

Assembly Code Example

sei ; set Global Interrupt Enable
sleep,; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

_SEI(); /* set Global Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt (s) */

48.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock
cycles the Program Vector address for the actual interrupt handling routine is executed. During this four clock cycle
period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and
this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction
is completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt exe-
cution response time is increased by four clock cycles. This increase comes in addition to the start-up time from the
selected sleep mode.

ATtiny25/45/85 [DATASHEET 13
Atmel y [ ]

25860-AVR-02/13



A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program
Counter (two bytes) is popped back from the Stack, the Stack Pointer is incremented by two, and the I-bit in SREG
is set.

ATtiny25/45/85 [DATASHEET 14
Atmel y [ ]

25860-AVR-02/13



5. AVR Memories

This section describes the different memories in the ATtiny25/45/85. The AVR architecture has two main memory
spaces, the Data memory and the Program memory space. In addition, the ATtiny25/45/85 features an EEPROM
Memory for data storage. All three memory spaces are linear and regular.

5.1 In-System Re-programmable Flash Program Memory

The ATtiny25/45/85 contains 2/4/8K bytes On-chip In-System Reprogrammable Flash memory for program stor-
age. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 1024/2048/4096 x 16.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATtiny25/45/85 Program Counter
(PC) is 10/11/12 bits wide, thus addressing the 1024/2048/4096 Program memory locations. “Memory Program-
ming” on page 146 contains a detailed description on Flash data serial downloading using the SPI pins.

Constant tables can be allocated within the entire Program memory address space (see the LPM — Load Program
memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Timing” on page 11.

Figure 5-1.  Program Memory Map

Program Memory

0x0000

0x03FF/0x07FF/0x0FFF

5.2 SRAM Data Memory
Figure 5-2 shows how the ATtiny25/45/85 SRAM Memory is organized.

The lower 224/352/607 Data memory locations address both the Register File, the /0 memory and the internal
data SRAM. The first 32 locations address the Register File, the next 64 locations the standard 1/0O memory, and
the last 128/256/512 locations address the internal data SRAM.

The five different addressing modes for the Data memory cover: Direct, Indirect with Displacement, Indirect, Indi-
rect with Pre-decrement, and Indirect with Post-increment. In the Register File, registers R26 to R31 feature the
indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z-
register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address
registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, and the 128/256/512 bytes of internal data SRAM in
the ATtiny25/45/85 are all accessible through all these addressing modes. The Register File is described in “Gen-
eral Purpose Register File” on page 10.

ATtiny25/45/85 [DATASHEET 15
Atmel y [ ]

25860-AVR-02/13



Figure 5-2. Data Memory Map

Data Memory

32 Registers 0x0000 - 0x001F
64 I/O Registers | 0x0020 - 0x005F
0x0060
Internal SRAM
(128/256/512 x 8)
0xODF/0x015F/0x025F

5.2.1 Data Memory Access Times
This section describes the general access timing concepts for internal memory access. The internal data SRAM
access is performed in two clksp, cycles as described in Figure 5-3.

Figure 5-3.  On-chip Data SRAM Access Cycles
T1 T2 T3

ok 4 N/

CPU

1
Address " Compute Address | X Address valid

1 1
1 1 —

Data T |:>— )
1 1 1 E
1 1

WR — 7
1 1 1 —
1 1 -

Data — =
1 1 1 g
1 1 1

RD 1 [ e\ &
T T 1 —
1 1 1

Memory Access Instruction Next Instruction

5.3 EEPROM Data Memory

The ATtiny25/45/85 contains 128/256/512 bytes of data EEPROM memory. It is organized as a separate data
space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000
write/erase cycles. The access between the EEPROM and the CPU is described in the following, specifying the
EEPROM Address Registers, the EEPROM Data Register, and the EEPROM Control Register. For details see
“Serial Downloading” on page 150.

53.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the 1/0 space.

The write access times for the EEPROM are given in Table 5-1 on page 21. A self-timing function, however, lets
the user software detect when the next byte can be written. If the user code contains instructions that write the
EEPROM, some precautions must be taken. In heavily filtered power supplies, V. is likely to rise or fall slowly on
Power-up/down. This causes the device for some period of time to run at a voltage lower than specified as mini-
mum for the clock frequency used. See “Preventing EEPROM Corruption” on page 19 for details on how to avoid
problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to “Atomic
Byte Programming” on page 17 and “Split Byte Programming” on page 17 for details on this.

ATtiny25/45/85 [DATASHEET 16
Atmel y [ ]

25860-AVR-02/13



When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When
the EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

5.3.2 Atomic Byte Programming
Using Atomic Byte Programming is the simplest mode. When writing a byte to the EEPROM, the user must write
the address into the EEAR Register and data into EEDR Register. If the EEPMn bits are zero, writing EEPE (within
four cycles after EEMPE is written) will trigger the erase/write operation. Both the erase and write cycle are done in
one operation and the total programming time is given in Table 5-1 on page 21. The EEPE bit remains set until the
erase and write operations are completed. While the device is busy with programming, it is not possible to do any
other EEPROM operations.

5.3.3 Split Byte Programming
It is possible to split the erase and write cycle in two different operations. This may be useful if the system requires
short access time for some limited period of time (typically if the power supply voltage falls). In order to take advan-
tage of this method, it is required that the locations to be written have been erased before the write operation. But
since the erase and write operations are split, it is possible to do the erase operations when the system allows
doing time-critical operations (typically after Power-up).

53.4 Erase
To erase a byte, the address must be written to EEAR. If the EEPMn bits are 0b01, writing the EEPE (within four
cycles after EEMPE is written) will trigger the erase operation only (programming time is given in Table 5-1 on
page 21). The EEPE bit remains set until the erase operation completes. While the device is busy programming, it
is not possible to do any other EEPROM operations.

5.35 Write
To write a location, the user must write the address into EEAR and the data into EEDR. If the EEPMn bits are
0b10, writing the EEPE (within four cycles after EEMPE is written) will trigger the write operation only (program-
ming time is given in Table 5-1 on page 21). The EEPE bit remains set until the write operation completes. If the
location to be written has not been erased before write, the data that is stored must be considered as lost. While
the device is busy with programming, it is not possible to do any other EEPROM operations.

The calibrated Oscillator is used to time the EEPROM accesses. Make sure the Oscillator frequency is within the
requirements described in “OSCCAL — Oscillator Calibration Register” on page 30.

ATtiny25/45/85 [DATASHEET 17
Atmel y [ ]

25860-AVR-02/13



Atmel

The following code examples show one assembly and one C function for erase, write, or atomic write of the
EEPROM. The examples assume that interrupts are controlled (e.g., by disabling interrupts globally) so that no
interrupts will occur during execution of these functions.

Assembly Code Example

EEPROM write:
; Wait for completion of previous write
sbic EECR, EEPE
rjmp EEPROM write
; Set Programming mode
1di 1rl6, (0<<EEPM1) | (0<<EEPMO)
out EECR, rlé6
; Set up address (rl18:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Write data (rl9) to data register
out EEDR, rl9
; Write logical one to EEMPE
sbi EECR, EEMPE
; Start eeprom write by setting EEPE
sbi EECR, EEPE

ret

C Code Example

void EEPROM write (unsigned char ucAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEPE))
/* Set Programming mode */
EECR = (O<<EEPM1)|(O<<EEPMO);
/* Set up address and data registers */
EEAR = ucAddress;
EEDR = ucData;
/* Write logical one to EEMPE */
EECR |= (1<<EEMPE) ;
/* Start eeprom write by setting EEPE */
EECR |= (1<<EEPE);

ATtiny25/45/85 [DATASHEET]

25860-AVR-02/13

18



The next code examples show assembly and C functions for reading the EEPROM. The examples assume that
interrupts are controlled so that no interrupts will occur during execution of these functions.

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEPE
rjmp EEPROM read
; Set up address (rl8:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from data register
in r16,EEDR

ret

C Code Example

unsigned char EEPROM read(unsigned char ucAddress)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEPE))

/* Set up address register */

EEAR = ucAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

5.3.6 Preventing EEPROM Corruption

During periods of low V¢, the EEPROM data can be corrupted because the supply voltage is too low for the CPU
and the EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and
the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write
sequence to the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute
instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does not match the
needed detection level, an external low V. reset protection circuit can be used. If a reset occurs while a write
operation is in progress, the write operation will be completed provided that the power supply voltage is sufficient.

5.4 1/0 Memory
The I/O space definition of the ATtiny25/45/85 is shown in “Register Summary” on page 199.

ATtiny25/45/85 [DATASHEET 19
Atmel y [ ]

25860-AVR-02/13



All ATtiny25/45/85 1/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by the
LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose working registers
and the 1/O space. /O Registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and
CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instruc-
tions. Refer to the instruction set section for more details. When using the I/O specific commands IN and OUT, the
I/O addresses 0x00 - Ox3F must be used. When addressing I/0 Registers as data space using LD and ST instruc-
tions, 0x20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved 1/O memory
addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will
only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI
and SBI instructions work with registers 0x00 to Ox1F only.

The 1/0O and Peripherals Control Registers are explained in later sections.

5.5 Register Description

5.5.1 EEARH and EEARL — EEPROM Address Register

Bit 7 6 5 4 3 2 1 0

Ox1F - - - - - - - EEARS EEARH
Ox1E EEAR7 EEAR6 EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
Bit 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

Read/Write R/W R/W R/W R/W R/IW R/W R/IW R/W

Initial Value 0 0 0 0 0 0 0 X

Initial Value X X X X X X X X

» Bits 7:1 — Res: Reserved Bits
These bits are reserved for future use and will always read as 0 in ATtiny25/45/85.

» Bits 8:0 - EEAR[8:0]: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL — specifies the high EEPROM address in the 128/256/512
bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 127/255/511. The initial
value of EEAR is undefined. A proper value must be written before the EEPROM may be accessed.

55.2 EEDR — EEPROM Data Register

Bit 7 6 5 4 3 2 1 0
0x1D | EEor7 | EEDR6 | EEDR5 | EEDR4 EEDR3 EEDR2 EEDR1 EEDRO | EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bits 7:0 — EEDR[7:0]: EEPROM Data
For the EEPROM write operation the EEDR Register contains the data to be written to the EEPROM in the address

given by the EEAR Register. For the EEPROM read operation, the EEDR contains the data read out from the
EEPROM at the address given by EEAR.

5.5.3 EECR — EEPROM Control Register

Bit 7 6 5 4 3 2 1 0
ox1C | - | - | EEPM1 | EEPMO EERIE EEMPE EEPE EERE | EECR
Read/Write R R RIW RIW RIW RIW RIW RIW
Initial Value 0 0 X X 0 0 X 0

ATtiny25/45/85 [DATASHEET 20
Atmel y [ ]

25860-AVR-02/13



* Bit 7 — Res: Reserved Bit
This bit is reserved for future use and will always read as 0 in ATtiny25/45/85. For compatibility with future AVR
devices, always write this bit to zero. After reading, mask out this bit.

» Bit 6 — Res: Reserved Bit
This bit is reserved in the ATtiny25/45/85 and will always read as zero.

» Bits 5:4 - EEPM[1:0]: EEPROM Programming Mode Bits

The EEPROM Programming mode bits setting defines which programming action that will be triggered when writ-
ing EEPE. It is possible to program data in one atomic operation (erase the old value and program the new value)
or to split the Erase and Write operations in two different operations. The Programming times for the different
modes are shown in Table 5-1. While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn
bits will be reset to 0b00 unless the EEPROM is busy programming.

Table 5-1. EEPROM Mode Bits

Programming
EEPM1 EEPMO Time Operation
0 0 3.4ms Erase and Write in one operation (Atomic Operation)
0 1 1.8 ms Erase Only
1 0 1.8 ms Write Only
1 1 - Reserved for future use

» Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set. Writing EERIE to zero dis-
ables the interrupt. The EEPROM Ready Interrupt generates a constant interrupt when Non-volatile memory is
ready for programming.

* Bit 2 - EEMPE: EEPROM Master Program Enable
The EEMPE bit determines whether writing EEPE to one will have effect or not.

When EEMPE is set, setting EEPE within four clock cycles will program the EEPROM at the selected address. If
EEMPE is zero, setting EEPE will have no effect. When EEMPE has been written to one by software, hardware
clears the bit to zero after four clock cycles.

» Bit 1 - EEPE: EEPROM Program Enable

The EEPROM Program Enable Signal EEPE is the programming enable signal to the EEPROM. When EEPE is
written, the EEPROM will be programmed according to the EEPMn bits setting. The EEMPE bit must be written to
one before a logical one is written to EEPE, otherwise no EEPROM write takes place. When the write access time
has elapsed, the EEPE bit is cleared by hardware. When EEPE has been set, the CPU is halted for two cycles
before the next instruction is executed.

» Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal — EERE - is the read strobe to the EEPROM. When the correct address is set
up in the EEAR Register, the EERE bit must be written to one to trigger the EEPROM read. The EEPROM read
access takes one instruction, and the requested data is available immediately. When the EEPROM is read, the
CPU is halted for four cycles before the next instruction is executed. The user should poll the EEPE bit before start-
ing the read operation. If a write operation is in progress, it is neither possible to read the EEPROM, nor to change
the EEAR Register.

ATtiny25/45/85 [DATASHEET 21
Atmel y [ ]

25860-AVR-02/13



6. System Clock and Clock Options

6.1 Clock Systems and their Distribution
Figure 6-1 presents the principal clock systems in the AVR and their distribution. All of the clocks need not be
active at a given time. In order to reduce power consumption, the clocks to modules not being used can be halted
by using different sleep modes, as described in “Power Management and Sleep Modes” on page 33. The clock
systems are detailed below.

Figure 6-1.  Clock Distribution

General I/0 Flash and
ADC Modules CPU Core RAM EEPROM
A 4 A A A A A

CIkPCK

clk,o AVR Clock clkepy

Control Unit
clk,nc ClKe ash
A
Reset Logic Watchdog Timer
Source clock

g

Watchdog clock

System Clock

x
Prescaler 4
=<
o
Clock Watchdog PLL

Multiplexer Oscillator Oscillator

A A A A T i

Crystal Low-Frequency Calibrated RC
External Clock Oscillator Crystal Oscillator Oscillator

6.1.1 CPU Clock — clkepy
The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such mod-
ules are the General Purpose Register File, the Status Register and the Data memory holding the Stack Pointer.
Halting the CPU clock inhibits the core from performing general operations and calculations.

6.1.2 I/0 Clock — clk,q
The 1/O clock is used by the majority of the I/O modules, like Timer/Counter. The 1/O clock is also used by the
External Interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing
such interrupts to be detected even if the I/O clock is halted.

6.1.3 Flash Clock — clkg asn
The Flash clock controls operation of the Flash interface. The Flash clock is usually active simultaneously with the
CPU clock.

ATtiny25/45/85 [DATASHEET 22
Atmel y [ ]

25860-AVR-02/13



6.1.4 ADC Clock —clkapc

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce
noise generated by digital circuitry. This gives more accurate ADC conversion results.

6.1.5 Internal PLL for Fast Peripheral Clock Generation - clkpck

The internal PLL in ATtiny25/45/85 generates a clock frequency that is 8x multiplied from a source input. By
default, the PLL uses the output of the internal, 8.0 MHz RC oscillator as source. Alternatively, if bit LSM of
PLLCSR is set the PLL will use the output of the RC oscillator divided by two. Thus the output of the PLL, the fast
peripheral clock is 64 MHz. The fast peripheral clock, or a clock prescaled from that, can be selected as the clock
source for Timer/Counterl or as a system clock. See Figure 6-2. The frequency of the fast peripheral clock is
divided by two when LSM of PLLCSR is set, resulting in a clock frequency of 32 MHz. Note, that LSM can not be
set if PLL « is used as system clock.

Figure 6-2. PCK Clocking System.

OSCCAL LSM PLLE CKSEL[3:0] CLKPS[3:0]

LocK
L= ]
DETECTOR PLOCK
12
4 MHz >
8.0 MHz PCK
OSCILLATOR 8 MHz PLL
8x 1/4
64/32MHz L | 16MHz
XTALY PRESCALER
sty 8 MHz SYSTEM
XTAL2 OSCILLATORS CLOCK
—p

The PLL is locked on the RC oscillator and adjusting the RC oscillator via OSCCAL register will adjust the fast
peripheral clock at the same time. However, even if the RC oscillator is taken to a higher frequency than 8 MHz,
the fast peripheral clock frequency saturates at 85 MHz (worst case) and remains oscillating at the maximum fre-
guency. It should be noted that the PLL in this case is not locked any longer with the RC oscillator clock. Therefore,
it is recommended not to take the OSCCAL adjustments to a higher frequency than 8 MHz in order to keep the PLL
in the correct operating range.

The internal PLL is enabled when:

» The PLLE bit in the register PLLCSR is set.
» The CKSEL fuse is programmed to ‘0001’
» The CKSEL fuse is programmed to ‘0011’

The PLLCSR bit PLOCK is set when PLL is locked.

Both internal RC oscillator and PLL are switched off in power down and stand-by sleep modes.

6.1.6 Internal PLL in ATtiny1l5 Compatibility Mode

Since ATtiny25/45/85 is a migration device for ATtiny1l5 users there is an ATtinyl5 compatibility mode for back-
ward compatibility. The ATtiny15 compatibility mode is selected by programming the CKSEL fuses to ‘0011".

In the ATtiny15 compatibility mode the frequency of the internal RC oscillator is calibrated down to 6.4 MHz and the
multiplication factor of the PLL is set to 4x. See Figure 6-3. With these adjustments the clocking system is
ATtinyl5-compatible and the resulting fast peripheral clock has a frequency of 25.6 MHz (same as in ATtiny15).

ATtiny25/45/85 [DATASHEET 23
Atmel y [ ]

25860-AVR-02/13



Figure 6-3. PCK Clocking System in ATtiny1l5 Compatibility Mode.

OSCCAL PLLE

PLL [ 256 MHz PCK

¢

LOCK
DETECTOR

E—
6.4 MHz PLOCK

OSCILLATOR

SYSTEM
CLOCK

Note that low speed mode is not implemented in ATtiny15 compatibility mode.

6.2 Clock Sources
The device has the following clock source options, selectable by Flash Fuse bits as shown below. The clock from
the selected source is input to the AVR clock generator, and routed to the appropriate modules.

Table 6-1. Device Clocking Options Select

Device Clocking Option CKSEL[S:O](l)
External Clock (see page 25) 0000
High Frequency PLL Clock (see page 25) 0001
Calibrated Internal Oscillator (see page 26) 0010®@
Calibrated Internal Oscillator (see page 26) 0011®
Internal 128 kHz Oscillator (see page 27) 0100
Low-Frequency Crystal Oscillator (see page 28) 0110
Crystal Oscillator / Ceramic Resonator (see page 28) 1000 - 1111
Reserved 0101, 0111

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.
2. The device is shipped with this option selected.

3. This will select ATtiny1l5 Compatibility Mode, where system clock is divided by four, resulting in a 1.6 MHz clock fre-
quency. For more inormation, see “Calibrated Internal Oscillator” on page 26.

The various choices for each clocking option is given in the following sections. When the CPU wakes up from
Power-down, the selected clock source is used to time the start-up, ensuring stable Oscillator operation before
instruction execution starts. When the CPU starts from reset, there is an additional delay allowing the power to
reach a stable level before commencing normal operation. The Watchdog Oscillator is used for timing this real-time
part of the start-up time. The number of WDT Oscillator cycles used for each time-out is shown in Table 6-2.

Table 6-2. Number of Watchdog Oscillator Cycles

Typ Time-out Number of Cycles
4 ms 512
64 ms 8K (8,192)

ATtiny25/45/85 [DATASHEET 24
Atmel y [ ]

25860-AVR-02/13



6.2.1 External Clock
To drive the device from an external clock source, CLKI should be driven as shown in Figure 6-4. To run the device
on an external clock, the CKSEL Fuses must be programmed to “00".
Figure 6-4. External Clock Drive Configuration
EXTERNAL
CLOCK CLKI
SIGNAL
GND
When this clock source is selected, start-up times are determined by the SUT Fuses as shown in Table 6-3.
Table 6-3. Start-up Times for the External Clock Selection
Start-up Time from Additional Delay from
SUT[1:0] Power-down Reset Recommended Usage
00 6 CK 14CK BOD enabled
01 6 CK 14CK + 4 ms Fast rising power
10 6 CK 14CK + 64 ms Slowly rising power
11 Reserved
When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure
stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to
unpredictable behavior. It is required to ensure that the MCU is kept in Reset during such changes in the clock
frequency.
Note that the System Clock Prescaler can be used to implement run-time changes of the internal clock frequency
while still ensuring stable operation. Refer to “System Clock Prescaler” on page 30 for details.
6.2.2 High Frequency PLL Clock

There is an internal PLL that provides nominally 64 MHz clock rate locked to the RC Oscillator for the use of the
Peripheral Timer/Counterl and for the system clock source. When selected as a system clock source, by program-
ming the CKSEL fuses to ‘0001’, it is divided by four like shown in Table 6-4.

Table 6-4. High Frequency PLL Clock Operating Modes
CKSEL[3:0] Nominal Frequency
0001 16 MHz

When this clock source is selected, start-up times are determined by the SUT fuses as shown in Table 6-5.

Table 6-5. Start-up Times for the High Frequency PLL Clock
Start-up Time from Additional Delay from Recommended
SUTJ[1:0] Power Down Power-On Reset (Voc =5.0V) | usage
00 14CK + 1K (1024) CK + 4 ms 4ms BOD enabled

Atmel

ATtiny25/45/85 [DATASHEET]

25860-AVR-02/13

25



Table 6-5. Start-up Times for the High Frequency PLL Clock

Start-up Time from Additional Delay from Recommended
SUT[1:0] Power Down Power-On Reset (Voc =5.0V) | usage
01 14CK + 16K (16384) CK + 4 ms 4 ms Fast rising power
10 14CK + 1K (1024) CK + 64 ms 4 ms Slowly rising power
11 14CK + 16K (16384) CK + 64 ms 4ms Slowly rising power
6.2.3 Calibrated Internal Oscillator

By default, the Internal RC Oscillator provides an approximate 8.0 MHz clock. Though voltage and temperature
dependent, this clock can be very accurately calibrated by the user. See “Calibrated Internal RC Oscillator Accu-
racy” on page 163 and “Internal Oscillator Speed” on page 191 for more details. The device is shipped with the
CKDIV8 Fuse programmed. See “System Clock Prescaler” on page 30 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in Table 6-6 on page
26. If selected, it will operate with no external components. During reset, hardware loads the pre-programmed cali-
bration value into the OSCCAL Register and thereby automatically calibrates the RC Oscillator. The accuracy of
this calibration is shown as Factory calibration in Table 21-2 on page 163.

By changing the OSCCAL register from SW, see “OSCCAL — Oscillator Calibration Register” on page 30, it is pos-
sible to get a higher calibration accuracy than by using the factory calibration. The accuracy of this calibration is
shown as User calibration in Table 21-2 on page 163.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer
and for the Reset Time-out. For more information on the pre-programmed calibration value, see the section “Cali-
bration Bytes” on page 149.

The internal oscillator can also be set to provide a 6.4 MHz clock by writing CKSEL fuses to “0011”, as shown in
Table 6-6 below. This setting is reffered to as ATtinyl5 Compatibility Mode and is intended to provide a calibrated
clock source at 6.4 MHz, as in ATtinyl5. In ATtinyl5 Compatibility Mode the PLL uses the internal oscillator run-
ning at 6.4 MHz to generate a 25.6 MHz peripheral clock signal for Timer/Counterl (see “8-bit Timer/Counterl in
ATtinyl5 Mode” on page 94). Note that in this mode of operation the 6.4 MHz clock signal is always divided by
four, providing a 1.6 MHz system clock.

Table 6-6. Internal Calibrated RC Oscillator Operating Modes

CKSEL[3:0] Nominal Frequency
0010® 8.0 MHz
0011®@ 6.4 MHz

Note: 1. The device is shipped with this option selected.

2. This setting will select ATtiny15 Compatibility Mode, where system clock is divided by four, resulting in a 1.6 MHz
clock frequency.

ATtiny25/45/85 [DATASHEET 26
Atmel y [ ]

25860-AVR-02/13



When the calibrated 8 MHz internal oscillator is selected as clock source the start-up times are determined by the
SUT Fuses as shown in Table 6-7 below.

Table 6-7. Start-up Times for Internal Calibrated RC Oscillator Clock
Start-up Time Additional Delay from
SUT[1:0] from Power-down Reset (Vc = 5.0V) Recommended Usage
00 6 CK 14CK® BOD enabled
01 6 CK 14CK + 4 ms Fast rising power
10@ 6 CK 14CK + 64 ms Slowly rising power
11 Reserved

Note: 1. Ifthe RSTDISBL fuse is programmed, this start-up time will be increased to 14CK + 4 ms to ensure programming
mode can be entered.

2. The device is shipped with this option selected.

In ATtinyl5 Compatibility Mode start-up times are determined by SUT fuses as shown in Table 6-8 below.

Table 6-8. Start-up Times for Internal Calibrated RC Oscillator Clock (in ATtiny1l5 Mode)
Start-up Time Additional Delay from
SUT[1:0] from Power-down Reset (Ve = 5.0V) Recommended Usage
00 6 CK 14CK + 64 ms
01 6 CK 14CK + 64 ms
10 6 CK 14CK + 4 ms
11 1CK 14CKW

Note: 1. Ifthe RSTDISBL fuse is programmed, this start-up time will be increased to 14CK + 4 ms to ensure programming
mode can be entered.

In summary, more information on ATtinyl5 Compatibility Mode can be found in sections “Port B (PB5:PB0)” on
page 2, “Internal PLL in ATtinyl5 Compatibility Mode” on page 23, “8-bit Timer/Counterl in ATtinyl5 Mode” on
page 94, “Limitations of debugWIRE” on page 139, “Calibration Bytes” on page 149 and in table “Clock Prescaler
Select” on page 32.

6.2.4 Internal 128 kHz Oscillator
The 128 kHz internal Oscillator is a low power Oscillator providing a clock of 128 kHz. The frequency is nhominal at

3V and 25°C. This clock may be select as the system clock by programming the CKSEL Fuses to “0100".

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in Table 6-9.

Table 6-9. Start-up Times for the 128 kHz Internal Oscillator
Start-up Time from Additional Delay from
SUT[1:0] Power-down Reset Recommended Usage
00 6 CK 14CK® BOD enabled
01 6 CK 14CK + 4 ms Fast rising power
10 6 CK 14CK + 64 ms Slowly rising power
11 Reserved

Atmel

ATtiny25/45/85 [DATASHEET] 27

25860-AVR-02/13



Note: 1. Ifthe RSTDISBL fuse is programmed, this start-up time will be increased to 14CK + 4 ms to ensure programming

mode can be entered.

6.2.5 Low-Frequency Crystal Oscillator
To use a 32.768 kHz watch crystal as the clock source for the device, the Low-frequency Crystal Oscillator must be
selected by setting CKSEL fuses to ‘0110’. The crystal should be connected as shown in Figure 6-5. To find suit-
able load capacitance for a 32.768 kHz crysal, please consult the manufacturer’s datasheet.
When this oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 6-10.
Table 6-10.  Start-up Times for the Low Frequency Crystal Oscillator Clock Selection
Start-up Time from Additional Delay from
SUT[1:0] Power Down Reset (Ve = 5.0V) Recommended usage
00 1K (1024) CK® 4 ms Fast rising power or BOD enabled
01 1K (1024) CK@W 64 ms Slowly rising power
10 32K (32768) CK 64 ms Stable frequency at start-up
11 Reserved
Note: 1. These options should be used only if frequency stability at start-up is not important.
The Low-frequency Crystal Oscillator provides an internal load capacitance, see Table 6-11 at each TOSC pin.
Table 6-11.  Capacitance of Low-Frequency Crystal Oscillator
Device 32 kHz Osc. Type Cap (Xtall/Toscl) Cap (Xtal2/Tosc2)
ATtiny25/45/85 System Osc. 16 pF 6 pF
6.2.6 Crystal Oscillator / Ceramic Resonator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as
an On-chip Oscillator, as shown in Figure 6-5. Either a quartz crystal or a ceramic resonator may be used.

Figure 6-5.  Crystal Oscillator Connections
C"Z ® XTAL2
Al l
C1 -
St & IxTAL1
GND

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends
on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environ-

ATtiny25/45/85 [DATASHEET] 28

25860-AVR-02/13

Atmel



6.2.7

ment. Some initial guidelines for choosing capacitors for use with crystals are given in Table 6-12 below. For
ceramic resonators, the capacitor values given by the manufacturer should be used.

Table 6-12.  Crystal Oscillator Operating Modes
Recommended Range for Capacitors C1 and
CKSEL[3:1] Frequency Range (MHz) C2 for Use with Crystals (pF)
100® 0.4-09 -
101 0.9-3.0 12-22
110 3.0-8.0 12 -22
111 8.0 - 12 -22
Notes: 1. This option should not be used with crystals, only with ceramic resonators.

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The operating
mode is selected by the fuses CKSEL[3:1] as shown in Table 6-12.

The CKSELO Fuse together with the SUT[1:0] Fuses select the start-up times as shown in Table 6-13.

Table 6-13.  Start-up Times for the Crystal Oscillator Clock Selection
Start-up Time from Additional Delay
CKSELO | SUT[1:0] Power-down from Reset Recommended Usage

0 00 258 CK® 14CK + 4 ms Ceramic resonator,
fast rising power

0 01 258 CK® 14CK + 64 ms Ceramic resonator,
slowly rising power
Ceramic resonator,

(2) )

0 10 1K (1024) CK 14CK BOD enabled

0 11 1K (1024)CK® 14CK + 4 ms Ceramic resonator,
fast rising power

1 00 1K (1024)CK® 14CK + 64 ms Ceramic resonator,
slowly rising power
Crystal Oscillator,

1 01 16K (16384) CK 14CK BOD enabled

1 10 16K (16384) CK 14CK + 4 ms Crystal Oscillator,
fast rising power

1 1 16K (16384) CK 14CK + 64 ms Crystal Oscillator,
slowly rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and only if

frequency stability at start-up is not important for the application. These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up. They can
also be used with crystals when not operating close to the maximum frequency of the device, and if frequency sta-
bility at start-up is not important for the application.

Default Clock Source
The device is shipped with CKSEL = “0010", SUT = “10", and CKDIV8 programmed. The default clock source set-
ting is therefore the Internal RC Oscillator running at 8 MHz with longest start-up time and an initial system clock
prescaling of 8, resulting in 1.0 MHz system clock. This default setting ensures that all users can make their
desired clock source setting using an In-System or High-voltage Programmer.

Atmel

ATtiny25/45/85 [DATASHEET] 29

25860-AVR-02/13



6.3 System Clock Prescaler

The ATtiny25/45/85 system clock can be divided by setting the “CLKPR — Clock Prescale Register” on page 31.
This feature can be used to decrease power consumption when the requirement for processing power is low. This
can be used with all clock source options, and it will affect the clock frequency of the CPU and all synchronous
peripherals. clk;q, clkapc, Clkepy, and clkg Asy are divided by a factor as shown in Table 6-15 on page 32.

6.3.1 Switching Time
When switching between prescaler settings, the System Clock Prescaler ensures that no glitches occur in the clock
system and that no intermediate frequency is higher than neither the clock frequency corresponding to the previous
setting, nor the clock frequency corresponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock, which may be faster
than the CPU’s clock frequency. Hence, it is not possible to determine the state of the prescaler — even if it were
readable, and the exact time it takes to switch from one clock division to another cannot be exactly predicted.

From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the new clock fre-
qguency is active. In this interval, 2 active clock edges are produced. Here, T1 is the previous clock period, and T2
is the period corresponding to the new prescaler setting.

6.4  Clock Output Buffer

The device can output the system clock on the CLKO pin (when not used as XTALZ2 pin). To enable the output, the
CKOUT Fuse has to be programmed. This mode is suitable when the chip clock is used to drive other circuits on
the system. Note that the clock will not be output during reset and that the normal operation of the 1/0O pin will be
overridden when the fuse is programmed. Internal RC Oscillator, WDT Oscillator, PLL, and external clock (CLKI)
can be selected when the clock is output on CLKO. Crystal oscillators (XTAL1, XTAL2) can not be used for clock
output on CLKO. If the System Clock Prescaler is used, it is the divided system clock that is output.

6.5 Register Description

6.5.1 OSCCAL - Oscillator Calibration Register

Bit 7 6 5 4 3 2 1 0

0x31 | caz | cae | cas | caa | cAL3 CAL2 CAL1 CALO | OsccAL
Read/Write RIW R/W RIW R/W RIW R/W RIW R/W

Initial Value Device Specific Calibration Value

» Bits 7:0 — CAL[7:0]: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to remove process varia-
tions from the oscillator frequency. A pre-programmed calibration value is automatically written to this register
during chip reset, giving the Factory calibrated frequency as specified in Table 21-2 on page 163. The application
software can write this register to change the oscillator frequency. The oscillator can be calibrated to frequencies
as specified in Table 21-2 on page 163. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write times will be affected
accordingly. If the EEPROM or Flash are written, do not calibrate to more than 8.8 MHz. Otherwise, the EEPROM
or Flash write may fail.

The CALY bit determines the range of operation for the oscillator. Setting this bit to O gives the lowest frequency
range, setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other
words a setting of OSCCAL = 0x7F gives a higher frequency than OSCCAL = 0x80.

The CAL[6:0] bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest fre-
guency in that range, and a setting of Ox7F gives the highest frequency in the range.

ATtiny25/45/85 [DATASHEET 30
Atmel y [ ]

25860-AVR-02/13



To ensure stable operation of the MCU the calibration value should be changed in small. A variation in frequency of
more than 2% from one cycle to the next can lead to unpredicatble behavior. Changes in OSCCAL should not
exceed 0x20 for each calibration. It is required to ensure that the MCU is kept in Reset during such changes in the
clock frequency

Table 6-14. Internal RC Oscillator Frequency Range

Typical Lowest Frequency Typical Highest Frequency
OSCCAL Value with Respect to Nominal Frequency with Respect to Nominal Frequency
0x00 50% 100%
Ox3F 75% 150%
Ox7F 100% 200%

6.5.2 CLKPR - Clock Prescale Register

Bit 7 6 5 4 3 2 1 0

0x26 | cikpce | - | - | - CLKPS3 | CLKPS2 | CLKPS1 | CLKPSO | CLKPR
Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

» Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE bit is only updated
when the other bits in CLKPR are simultaniosly written to zero. CLKPCE is cleared by hardware four cycles after it
is written or when the CLKPS bits are written. Rewriting the CLKPCE bit within this time-out period does neither
extend the time-out period, nor clear the CLKPCE bit.

» Bits 6:4 — Res: Reserved Bits
These bits are reserved bits in the ATtiny25/45/85 and will always read as zero.

e Bits 3:0 - CLKPS[3:0]: Clock Prescaler Select Bits 3-0

These bits define the division factor between the selected clock source and the internal system clock. These bits
can be written run-time to vary the clock frequency to suit the application requirements. As the divider divides the
master clock input to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used.
The division factors are given in Table 6-15.

To avoid unintentional changes of clock frequency, a special write procedure must be followed to change the
CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is not interrupted.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed, the CLKPS bits will
be reset to “0000". If CKDIV8 is programmed, CLKPS bits are reset to “0011", giving a division factor of eight at
start up. This feature should be used if the selected clock source has a higher frequency than the maximum fre-
guency of the device at the present operating conditions. Note that any value can be written to the CLKPS bits
regardless of the CKDIV8 Fuse setting. The Application software must ensure that a sufficient division factor is

ATtiny25/45/85 [DATASHEET 31
Atmel y [ ]

25860-AVR-02/13



chosen if the selcted clock source has a higher frequency than the maximum frequency of the device at the present
operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 6-15. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved

Note:  The prescaler is disabled in ATtiny15 compatibility mode and neither writing to CLKPR, nor programming the CKDIV8
fuse has any effect on the system clock (which will always be 1.6 MHz).

ATtiny25/45/85 [DATASHEET 32
Atmel y [ ]

25860-AVR-02/13



7. Power Management and Sleep Modes
The high performance and industry leading code efficiency makes the AVR microcontrollers an ideal choise for low
power applications. In addition, sleep modes enable the application to shut down unused modules in the MCU,
thereby saving power. The AVR provides various sleep modes allowing the user to tailor the power consumption to
the application’s requirements.

7.1 Sleep Modes

Figure 6-1 on page 22 presents the different clock systems and their distribution in ATtiny25/45/85. The figure is
helpful in selecting an appropriate sleep mode. Table 7-1 shows the different sleep modes and their wake up
sources.

Table 7-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

Active Clock Domains Oscillators Wake-up Sources
c
B
o} =
(7] = k]
s ) 5
x T Q| x O
(8] o [@2]
T ou 28 W 5 Q S e
[ = T o
S 0 o « O 8 c c | W > Pl — c S
< = Ol =0T (2] O =
% i o <D( 8 £ S o > © — Q (O] o =
T E c < S O
X X X X X o ZS£ino 0 a) S =
Sleep Mode 3] o 3] o 3] =0 =0 | -] < ] = c
Idle X | X | X X X X X X X X
ADC N(_)lse X X X X X X X
Reduction
Power-down x® X X

Note: 1. For INTO, only level interrupt.

To enter any of the three sleep modes, the SE bit in MCUCR must be written to logic one and a SLEEP instruction
must be executed. The SM[1:0] bits in the MCUCR Register select which sleep mode (ldle, ADC Noise Reduction
or Power-down) will be activated by the SLEEP instruction. See Table 7-2 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for
four cycles in addition to the start-up time, executes the interrupt routine, and resumes execution from the instruc-
tion following SLEEP. The contents of the Register File and SRAM are unaltered when the device wakes up from
sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.

Note that if a level triggered interrupt is used for wake-up the changed level must be held for some time to wake up
the MCU (and for the MCU to enter the interrupt service routine). See “External Interrupts” on page 48 for details.

7.1.1 Idle Mode
When the SM[1:0] bits are written to 00, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU
but allowing Analog Comparator, ADC, USI, Timer/Counter, Watchdog, and the interrupt system to continue oper-
ating. This sleep mode basically halts clksp, and clkg asy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the Timer
Overflow. If wake-up from the Analog Comparator interrupt is not required, the Analog Comparator can be powered
down by setting the ACD bit in “ACSR — Analog Comparator Control and Status Register” on page 119. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automatically when this mode
is entered.

ATtiny25/45/85 [DATASHEET 33
Atmel y [ ]

25860-AVR-02/13



7.1.2 ADC Noise Reduction Mode
When the SM[1:0] bits are written to 01, the SLEEP instruction makes the MCU enter ADC Noise Reduction mode,
stopping the CPU but allowing the ADC, the external interrupts, and the Watchdog to continue operating (if
enabled). This sleep mode halts clkq, Clkcpy, and clkg asy, While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is
enabled, a conversion starts automatically when this mode is entered. Apart form the ADC Conversion Complete
interrupt, only an External Reset, a Watchdog Reset, a Brown-out Reset, an SPM/EEPROM ready interrupt, an
external level interrupt on INTO or a pin change interrupt can wake up the MCU from ADC Noise Reduction mode.

7.13 Power-down Mode
When the SM[1:0] bits are written to 10, the SLEEP instruction makes the MCU enter Power-down mode. In this
mode, the Oscillator is stopped, while the external interrupts, the USI start condition detection and the Watchdog
continue operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out Reset, USI start condition
interupt, an external level interrupt on INTO or a pin change interrupt can wake up the MCU. This sleep mode halts
all generated clocks, allowing operation of asynchronous modules only.

7.2 Software BOD Disable

When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses (see Table 20-4 on page 147), the BOD is
actively monitoring the supply voltage during a sleep period. In some devices it is possible to save power by dis-
abling the BOD by software in Power-Down sleep mode. The sleep mode power consumption will then be at the
same level as when BOD is globally disabled by fuses.

If BOD is disabled by software, the BOD function is turned off immediately after entering the sleep mode. Upon
wake-up from sleep, BOD is automatically enabled again. This ensures safe operation in case the V. level has
dropped during the sleep period.

When the BOD has been disabled, the wake-up time from sleep mode will be the same as that for wakeing up from
RESET. The user must manually configure the wake up times such that the bandgap reference has time to start
and the BOD is working correctly before the MCU continues executing code. See SUT[1:0] and CKSEL[3:0] fuse
bits in table “Fuse Low Byte” on page 148

BOD disable is controlled by the BODS (BOD Sleep) bit of MCU Control Register, see “MCUCR — MCU Control
Register” on page 36. Writing this bit to one turns off BOD in Power-Down, while writing a zero keeps the BOD
active. The default setting is zero, i.e. BOD active.

Writing to the BODS bit is controlled by a timed sequence and an enable bit, see “MCUCR — MCU Control Regis-
ter” on page 36.

ATtiny25/45/85 [DATASHEET 34
Atmel y [ ]

25860-AVR-02/13



7.2.1 Limitations
BOD disable functionality has been implemented in the following devices, only:

» ATtiny25, revision E, and newer
* ATtiny45, revision D, and newer
 ATtiny85, revision C, and newer

Revisions are marked on the device package and can be located as follows:

 Bottom side of packages 8P3 and 8S2
* Top side of package 20M1

7.3 Power Reduction Register
The Power Reduction Register (PRR), see “PRR — Power Reduction Register” on page 37, provides a method to
reduce power consumption by stopping the clock to individual peripherals. The current state of the peripheral is fro-
zen and the I/O registers can not be read or written. Resources used by the peripheral when stopping the clock will
remain occupied, hence the peripheral should in most cases be disabled before stopping the clock. Waking up a
module, which is done by clearing the bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall power consump-
tion. In all other sleep modes, the clock is already stopped. See “Supply Current of I/O modules” on page 176 for
examples.

7.4  Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR controlled system.
In general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as
few as possible of the device’s functions are operating. All functions not needed should be disabled. In particular,
the following modules may need special consideration when trying to achieve the lowest possible power
consumption.

74.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering
any sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion.
Refer to “Analog to Digital Converter” on page 121 for details on ADC operation.

7.4.2 Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not used. When entering ADC Noise
Reduction mode, the Analog Comparator should be disabled. In the other sleep modes, the Analog Comparator is
automatically disabled. However, if the Analog Comparator is set up to use the Internal Voltage Reference as
input, the Analog Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Reference will
be enabled, independent of sleep mode. Refer to “Analog Comparator” on page 118 for details on how to configure
the Analog Comparator.

7.4.3 Brown-out Detector
If the Brown-out Detector is not needed in the application, this module should be turned off. If the Brown-out Detec-
tor is enabled by the BODLEVEL Fuses, it will be enabled in all sleep modes, and hence, always consume power.
In the deeper sleep modes, this will contribute significantly to the total current consumption. See “Brown-out Detec-
tion” on page 40 and “Software BOD Disable” on page 34 for details on how to configure the Brown-out Detector.

ATtiny25/45/85 [DATASHEET 35
Atmel y [ ]

25860-AVR-02/13



7.4.4 Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the Analog Comparator
or the ADC. If these modules are disabled as described in the sections above, the internal voltage reference will be
disabled and it will not be consuming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be used immediately. Refer to
“Internal Voltage Reference” on page 41 for details on the start-up time.

7.4.5 Watchdog Timer
If the Watchdog Timer is not needed in the application, this module should be turned off. If the Watchdog Timer is
enabled, it will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this
will contribute significantly to the total current consumption. Refer to “Watchdog Timer” on page 41 for details on
how to configure the Watchdog Timer.

7.4.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The most important thing
is then to ensure that no pins drive resistive loads. In sleep modes where both the 1/O clock (clk,) and the ADC
clock (clkapc) are stopped, the input buffers of the device will be disabled. This ensures that no power is consumed
by the input logic when not needed. In some cases, the input logic is needed for detecting wake-up conditions, and
it will then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 56 for details on which
pins are enabled. If the input buffer is enabled and the input signal is left floating or has an analog signal level close
to Vc/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to Vc/2
on an input pin can cause significant current even in active mode. Digital input buffers can be disabled by writing to
the Digital Input Di