From 7291810f5a9b27605699f8dfc1fbab1b18b1ccf5 Mon Sep 17 00:00:00 2001 From: Radek Oslejsek <oslejsek@fi.muni.cz> Date: Sun, 2 May 2021 13:18:22 +0200 Subject: [PATCH] Final refactoring --- .../analyst/icp/EigenvalueDecomposition.java | 133 +++++++----------- .../java/cz/fidentis/analyst/icp/Icp.java | 2 +- .../cz/fidentis/analyst/icp/Quaternion.java | 3 +- .../analyst/tests/EfficiencyTests.java | 2 +- 4 files changed, 55 insertions(+), 85 deletions(-) diff --git a/Comparison/src/main/java/cz/fidentis/analyst/icp/EigenvalueDecomposition.java b/Comparison/src/main/java/cz/fidentis/analyst/icp/EigenvalueDecomposition.java index 2f75f97a..4a09774d 100644 --- a/Comparison/src/main/java/cz/fidentis/analyst/icp/EigenvalueDecomposition.java +++ b/Comparison/src/main/java/cz/fidentis/analyst/icp/EigenvalueDecomposition.java @@ -427,7 +427,6 @@ public class EigenvalueDecomposition implements java.io.Serializable { // Fortran subroutine in EISPACK. // Initialize - int nn = this.n; int n = nn-1; int low = 0; @@ -437,25 +436,13 @@ public class EigenvalueDecomposition implements java.io.Serializable { double p=0,q=0,r=0,s=0,z=0,t,w,x,y; // Store roots isolated by balanc and compute matrix norm - - double norm = 0.0; - for (int i = 0; i < nn; i++) { - if (i < low | i > high) { - d[i] = arrayH[i][i]; - e[i] = 0.0; - } - for (int j = Math.max(i-1,0); j < nn; j++) { - norm = norm + Math.abs(arrayH[i][j]); - } - } - + double norm = storeRootsGetNorm(nn, low, high); + // Outer loop over eigenvalue index - int iter = 0; while (n >= low) { // Look for single small sub-diagonal element - int l = n; while (l > low) { s = Math.abs(arrayH[l-1][l-1]) + Math.abs(arrayH[l][l]); @@ -469,18 +456,13 @@ public class EigenvalueDecomposition implements java.io.Serializable { } // Check for convergence - // One root found - - if (l == n) { + if (l == n) { // One root found arrayH[n][n] = arrayH[n][n] + exshift; d[n] = arrayH[n][n]; e[n] = 0.0; n--; iter = 0; - - // Two roots found - - } else if (l == n-1) { + } else if (l == n-1) { // Two roots found w = arrayH[n][n-1] * arrayH[n-1][n]; p = (arrayH[n-1][n-1] - arrayH[n][n]) / 2.0; q = p * p + w; @@ -489,14 +471,8 @@ public class EigenvalueDecomposition implements java.io.Serializable { arrayH[n-1][n-1] = arrayH[n-1][n-1] + exshift; x = arrayH[n][n]; - // Real pair - - if (q >= 0) { - if (p >= 0) { - z = p + z; - } else { - z = p - z; - } + if (q >= 0) { // Real pair + z = (p >= 0) ? p + z : p - z; d[n-1] = x + z; d[n] = d[n-1]; if (z != 0.0) { @@ -512,33 +488,24 @@ public class EigenvalueDecomposition implements java.io.Serializable { p = p / r; q = q / r; - // Row modification - - for (int j = n-1; j < nn; j++) { + for (int j = n-1; j < nn; j++) { // Row modification z = arrayH[n-1][j]; arrayH[n-1][j] = q * z + p * arrayH[n][j]; arrayH[n][j] = q * arrayH[n][j] - p * z; } - // Column modification - - for (int i = 0; i <= n; i++) { + for (int i = 0; i <= n; i++) { // Column modification z = arrayH[i][n-1]; arrayH[i][n-1] = q * z + p * arrayH[i][n]; arrayH[i][n] = q * arrayH[i][n] - p * z; } - // Accumulate transformations - - for (int i = low; i <= high; i++) { + for (int i = low; i <= high; i++) { // Accumulate transformations z = arrayV[i][n-1]; arrayV[i][n-1] = q * z + p * arrayV[i][n]; arrayV[i][n] = q * arrayV[i][n] - p * z; } - - // Complex pair - - } else { + } else { // Complex pair d[n-1] = x + p; d[n] = x + p; e[n-1] = z; @@ -546,13 +513,8 @@ public class EigenvalueDecomposition implements java.io.Serializable { } n = n - 2; iter = 0; - - // No convergence yet - - } else { - + } else { // No convergence yet // Form shift - x = arrayH[n][n]; y = 0.0; w = 0.0; @@ -561,9 +523,7 @@ public class EigenvalueDecomposition implements java.io.Serializable { w = arrayH[n][n-1] * arrayH[n-1][n]; } - // Wilkinson's original ad hoc shift - - if (iter == 10) { + if (iter == 10) { // Wilkinson's original ad hoc shift exshift += x; for (int i = low; i <= n; i++) { arrayH[i][i] -= x; @@ -573,9 +533,7 @@ public class EigenvalueDecomposition implements java.io.Serializable { w = -0.4375 * s * s; } - // MATLAB's new ad hoc shift - - if (iter == 30) { + if (iter == 30) { // MATLAB's new ad hoc shift s = (y - x) / 2.0; s = s * s + w; if (s > 0) { @@ -595,7 +553,6 @@ public class EigenvalueDecomposition implements java.io.Serializable { iter = iter + 1; // (Could check iteration count here.) // Look for two consecutive small sub-diagonal elements - int m = n-2; while (m >= l) { z = arrayH[m][m]; @@ -619,16 +576,9 @@ public class EigenvalueDecomposition implements java.io.Serializable { m--; } - for (int i = m+2; i <= n; i++) { - arrayH[i][i-2] = 0.0; - if (i > m+2) { - arrayH[i][i-3] = 0.0; - } - } + updateH(m); // Double QR step involving rows l:n and columns m:n - - for (int k = m; k <= n-1; k++) { boolean notlast = (k != n-1); if (k != m) { @@ -660,9 +610,8 @@ public class EigenvalueDecomposition implements java.io.Serializable { z = r / s; q = q / p; r = r / p; - + // Row modification - for (int j = k; j < nn; j++) { p = arrayH[k][j] + q * arrayH[k+1][j]; if (notlast) { @@ -674,7 +623,6 @@ public class EigenvalueDecomposition implements java.io.Serializable { } // Column modification - for (int i = 0; i <= Math.min(n,k+3); i++) { p = x * arrayH[i][k] + y * arrayH[i][k+1]; if (notlast) { @@ -686,7 +634,6 @@ public class EigenvalueDecomposition implements java.io.Serializable { } // Accumulate transformations - for (int i = low; i <= high; i++) { p = x * arrayV[i][k] + y * arrayV[i][k+1]; if (notlast) { @@ -701,12 +648,38 @@ public class EigenvalueDecomposition implements java.io.Serializable { } // check convergence } // while (n >= low) - // Backsubstitute to find vectors of upper triangular form - - if (norm == 0.0) { - return; + if (norm != 0.0) { + backSubstitute(nn, eps, norm); // Backsubstitute to find vectors of upper triangular form + backTransform(nn, low, high); // Back transformation to get eigenvectors of original matrix + } + } + + private void updateH(int m) { + for (int i = m+2; i <= n; i++) { + arrayH[i][i-2] = 0.0; + if (i > m+2) { + arrayH[i][i-3] = 0.0; + } } - + } + + private double storeRootsGetNorm(int nn, int low, int high) { + double norm = 0.0; + for (int i = 0; i < nn; i++) { + if (i < low | i > high) { + d[i] = arrayH[i][i]; + e[i] = 0.0; + } + for (int j = Math.max(i-1,0); j < nn; j++) { + norm = norm + Math.abs(arrayH[i][j]); + } + } + return norm; + } + + private void backSubstitute(int nn, double eps, double norm) { + double p=0,q=0,r=0,s=0,z=0,t,w,x,y; + for (n = nn-1; n >= 0; n--) { p = d[n]; q = e[n]; @@ -835,10 +808,10 @@ public class EigenvalueDecomposition implements java.io.Serializable { } } } - - // Vectors of isolated roots - - for (int i = 0; i < nn; i++) { + } + + private void backTransform(int nn, int low, int high) { + for (int i = 0; i < nn; i++) { // Vectors of isolated roots if (i < low | i > high) { for (int j = i; j < nn; j++) { arrayV[i][j] = arrayH[i][j]; @@ -846,11 +819,9 @@ public class EigenvalueDecomposition implements java.io.Serializable { } } - // Back transformation to get eigenvectors of original matrix - - for (int j = nn-1; j >= low; j--) { + for (int j = nn-1; j >= low; j--) { // Back transformation to get eigenvectors of original matrix for (int i = low; i <= high; i++) { - z = 0.0; + double z = 0.0; for (int k = low; k <= Math.min(j,high); k++) { z = z + arrayV[i][k] * arrayH[k][j]; } diff --git a/Comparison/src/main/java/cz/fidentis/analyst/icp/Icp.java b/Comparison/src/main/java/cz/fidentis/analyst/icp/Icp.java index 4a682da7..33588ae4 100644 --- a/Comparison/src/main/java/cz/fidentis/analyst/icp/Icp.java +++ b/Comparison/src/main/java/cz/fidentis/analyst/icp/Icp.java @@ -168,7 +168,7 @@ public class Icp { Matrix4d matrixPointCompare = pointToMatrix(relativeCoordinate(comparedPoints.get(i).getPosition(),comparedCenter)); matrixPointCompare.mul(rotationMatrix); - + matrixPoint.mulTransposeLeft(matrixPoint, matrixPointCompare); matrixPointCompare.mulTransposeLeft(matrixPointCompare, matrixPointCompare); diff --git a/Comparison/src/main/java/cz/fidentis/analyst/icp/Quaternion.java b/Comparison/src/main/java/cz/fidentis/analyst/icp/Quaternion.java index 11aede9c..0e7c603a 100644 --- a/Comparison/src/main/java/cz/fidentis/analyst/icp/Quaternion.java +++ b/Comparison/src/main/java/cz/fidentis/analyst/icp/Quaternion.java @@ -2,11 +2,10 @@ package cz.fidentis.analyst.icp; import javax.vecmath.Matrix4d; import javax.vecmath.Quat4d; -import javax.vecmath.Vector3d; /** * This class represents quaternions. - * Primary, it fixes the error in the {@code Quat4d} constructor, which normalizes + * Primary, it fixes the error (?) in the {@code Quat4d} constructor, which normalizes * the given coordinates for some reason. Moreover, this extension * introduces useful methods that accelerate the ICP calculation a bit. * diff --git a/GUI/src/main/java/cz/fidentis/analyst/tests/EfficiencyTests.java b/GUI/src/main/java/cz/fidentis/analyst/tests/EfficiencyTests.java index 09fce379..ec473c14 100644 --- a/GUI/src/main/java/cz/fidentis/analyst/tests/EfficiencyTests.java +++ b/GUI/src/main/java/cz/fidentis/analyst/tests/EfficiencyTests.java @@ -149,7 +149,7 @@ public class EfficiencyTests { private static void printIcp(HumanFace face1, HumanFace face2) throws IOException { long startTime = System.currentTimeMillis(); Icp icp = new Icp(); - icp.setParameters(100, false, 0.001); + icp.setParameters(10, false, 0.05); icp.getTransformedFacet(face1.getMeshModel().getFacets().get(0), face2.getMeshModel().getFacets().get(0)); long endTime = System.currentTimeMillis(); System.out.println("ICP:\t " +(endTime-startTime) + " msec, " + (icp.getTransformations().size()+1) + " iterations"); -- GitLab