bio_volumentations.core package
bio_volumentations.core.composition module
- class bio_volumentations.core.composition.Compose(transforms, p=1.0, targets=(['image'], ['mask'], ['float_mask']), conversion=None)[source]
Bases:
object
Compose a list of transformations into a callable transformation pipeline.
In addition, basic input image checks and conversions are performed. Optionally, datatype conversion (e.g. from
numpy.ndarray
totorch.Tensor
) is performed.- Parameters:
transforms (List[Transform]) – List of transforms (objects of type
Transform
).p (float, optional) –
Chance of applying the whole pipeline.
Defaults to
1
.targets (Tuple[List[str]] | List[List[str]], optional) –
List of targets.
Defaults to
(['image'], ['mask'], ['float_mask'])
.conversion (Transform | None, optional) –
Image datatype conversion transform, applied after the transformations.
Defaults to
None
.
bio_volumentations.core.transforms_interface module
- class bio_volumentations.core.transforms_interface.DualTransform(always_apply=False, p=0.5)[source]
Bases:
Transform
The base class of transformations applied to all target types.
- Targets:
image, mask
- class bio_volumentations.core.transforms_interface.ImageOnlyTransform(always_apply=False, p=0.5)[source]
Bases:
Transform
The base class of transformations applied to the image target only.
- Targets:
image
- property targets
- class bio_volumentations.core.transforms_interface.Transform(always_apply=False, p=0.5)[source]
Bases:
object
The base class for transformations.
- Parameters:
always_apply (bool, optional) –
Always apply this transformation.
Defaults to
False
.p (float, optional) –
Chance of applying this transformation.
Defaults to
0.5
.