bio_volumentations.core package
bio_volumentations.core.composition module
- class bio_volumentations.core.composition.Compose(transforms, p=1.0, targets=(['image'], ['mask'], ['float_mask']), conversion=None)
Bases:
object
Compose a list of transforms into a callable transformation pipeline.
In addition, basic input image checks and conversions are performed. Optionally, datatype conversion (e.g. from numpy.ndarray to torch.Tensor) is performed.
- Args:
transforms (List[Transform]): a list of transforms. p (float, optional): chance of applying the whole pipeline. Defaults to 1. targets (Tuple[List[str]] | List[List[str]], optional): a list of targets.
Defaults to ([‘image’], [‘mask’], [‘float_mask’]).
- conversion (Transform | None, optional): image datatype conversion transform, applied after the transformations.
Defaults to None.
- get_always_apply_transforms()
bio_volumentations.core.transforms_interface module
- class bio_volumentations.core.transforms_interface.DualTransform(always_apply=False, p=0.5)
Bases:
Transform
The base class of transforms applied to all target types.
- apply_to_float_mask(float_mask, **params)
- apply_to_mask(mask, **params)